
FFTW
for version 3.3.4, 20 September 2013

Matteo Frigo
Steven G. Johnson

This manual is for FFTW (version 3.3.4, 20 September 2013).

Copyright c© 2003 Matteo Frigo.

Copyright c© 2003 Massachusetts Institute of Technology.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the Free
Software Foundation.

i

Table of Contents

1 Introduction . 1

2 Tutorial . 3
2.1 Complex One-Dimensional DFTs . 3
2.2 Complex Multi-Dimensional DFTs . 5
2.3 One-Dimensional DFTs of Real Data . 6
2.4 Multi-Dimensional DFTs of Real Data . 7
2.5 More DFTs of Real Data . 10

2.5.1 The Halfcomplex-format DFT . 11
2.5.2 Real even/odd DFTs (cosine/sine transforms) 11
2.5.3 The Discrete Hartley Transform . 13

3 Other Important Topics . 15
3.1 SIMD alignment and fftw malloc . 15
3.2 Multi-dimensional Array Format . 15

3.2.1 Row-major Format . 15
3.2.2 Column-major Format . 16
3.2.3 Fixed-size Arrays in C . 16
3.2.4 Dynamic Arrays in C . 17
3.2.5 Dynamic Arrays in C—The Wrong Way 17

3.3 Words of Wisdom—Saving Plans . 18
3.4 Caveats in Using Wisdom . 18

4 FFTW Reference . 21
4.1 Data Types and Files . 21

4.1.1 Complex numbers . 21
4.1.2 Precision . 21
4.1.3 Memory Allocation . 22

4.2 Using Plans . 22
4.3 Basic Interface . 24

4.3.1 Complex DFTs . 24
4.3.2 Planner Flags . 25
4.3.3 Real-data DFTs . 27
4.3.4 Real-data DFT Array Format . 28
4.3.5 Real-to-Real Transforms . 29
4.3.6 Real-to-Real Transform Kinds . 30

4.4 Advanced Interface . 31
4.4.1 Advanced Complex DFTs . 31
4.4.2 Advanced Real-data DFTs . 33
4.4.3 Advanced Real-to-real Transforms . 33

4.5 Guru Interface . 34
4.5.1 Interleaved and split arrays . 34

ii FFTW 3.3.4

4.5.2 Guru vector and transform sizes . 34
4.5.3 Guru Complex DFTs . 35
4.5.4 Guru Real-data DFTs . 36
4.5.5 Guru Real-to-real Transforms . 37
4.5.6 64-bit Guru Interface . 38

4.6 New-array Execute Functions . 38
4.7 Wisdom . 40

4.7.1 Wisdom Export . 40
4.7.2 Wisdom Import . 41
4.7.3 Forgetting Wisdom . 41
4.7.4 Wisdom Utilities . 41

4.8 What FFTW Really Computes . 42
4.8.1 The 1d Discrete Fourier Transform (DFT) 42
4.8.2 The 1d Real-data DFT . 43
4.8.3 1d Real-even DFTs (DCTs) . 43
4.8.4 1d Real-odd DFTs (DSTs) . 45
4.8.5 1d Discrete Hartley Transforms (DHTs) 46
4.8.6 Multi-dimensional Transforms . 46

5 Multi-threaded FFTW . 49
5.1 Installation and Supported Hardware/Software 49
5.2 Usage of Multi-threaded FFTW . 49
5.3 How Many Threads to Use? . 51
5.4 Thread safety . 51

6 Distributed-memory FFTW with MPI 53
6.1 FFTW MPI Installation . 53
6.2 Linking and Initializing MPI FFTW . 54
6.3 2d MPI example . 54
6.4 MPI Data Distribution . 56

6.4.1 Basic and advanced distribution interfaces 56
6.4.2 Load balancing . 58
6.4.3 Transposed distributions . 58
6.4.4 One-dimensional distributions . 59

6.5 Multi-dimensional MPI DFTs of Real Data . 60
6.6 Other multi-dimensional Real-Data MPI Transforms 62
6.7 FFTW MPI Transposes . 62

6.7.1 Basic distributed-transpose interface . 63
6.7.2 Advanced distributed-transpose interface 63
6.7.3 An improved replacement for MPI Alltoall 64

6.8 FFTW MPI Wisdom . 64
6.9 Avoiding MPI Deadlocks . 65
6.10 FFTW MPI Performance Tips . 66
6.11 Combining MPI and Threads . 66
6.12 FFTW MPI Reference . 67

6.12.1 MPI Files and Data Types . 67
6.12.2 MPI Initialization . 68
6.12.3 Using MPI Plans . 68

iii

6.12.4 MPI Data Distribution Functions . 69
6.12.5 MPI Plan Creation . 70
6.12.6 MPI Wisdom Communication . 74

6.13 FFTW MPI Fortran Interface . 74

7 Calling FFTW from Modern Fortran 77
7.1 Overview of Fortran interface . 77

7.1.1 Extended and quadruple precision in Fortran 78
7.2 Reversing array dimensions . 78
7.3 FFTW Fortran type reference . 80
7.4 Plan execution in Fortran . 81
7.5 Allocating aligned memory in Fortran . 82
7.6 Accessing the wisdom API from Fortran . 83

7.6.1 Wisdom File Export/Import from Fortran 83
7.6.2 Wisdom String Export/Import from Fortran 84
7.6.3 Wisdom Generic Export/Import from Fortran 84

7.7 Defining an FFTW module . 85

8 Calling FFTW from Legacy Fortran 87
8.1 Fortran-interface routines . 87
8.2 FFTW Constants in Fortran . 88
8.3 FFTW Execution in Fortran . 88
8.4 Fortran Examples . 89
8.5 Wisdom of Fortran? . 91

9 Upgrading from FFTW version 2 93

10 Installation and Customization 97
10.1 Installation on Unix . 97
10.2 Installation on non-Unix systems . 100
10.3 Cycle Counters . 100
10.4 Generating your own code . 101

11 Acknowledgments . 103

12 License and Copyright . 105

13 Concept Index . 107

14 Library Index . 109

Chapter 1: Introduction 1

1 Introduction

This manual documents version 3.3.4 of FFTW, the Fastest Fourier Transform in the West.
FFTW is a comprehensive collection of fast C routines for computing the discrete Fourier
transform (DFT) and various special cases thereof.

• FFTW computes the DFT of complex data, real data, even- or odd-symmetric real data
(these symmetric transforms are usually known as the discrete cosine or sine transform,
respectively), and the discrete Hartley transform (DHT) of real data.

• The input data can have arbitrary length. FFTW employs O(n log n) algorithms for
all lengths, including prime numbers.

• FFTW supports arbitrary multi-dimensional data.

• FFTW supports the SSE, SSE2, AVX, Altivec, and MIPS PS instruction sets.

• FFTW includes parallel (multi-threaded) transforms for shared-memory systems.

• Starting with version 3.3, FFTW includes distributed-memory parallel transforms using
MPI.

We assume herein that you are familiar with the properties and uses of the DFT that
are relevant to your application. Otherwise, see e.g. The Fast Fourier Transform and Its
Applications by E. O. Brigham (Prentice-Hall, Englewood Cliffs, NJ, 1988). Our web page
also has links to FFT-related information online.

In order to use FFTW effectively, you need to learn one basic concept of FFTW’s internal
structure: FFTW does not use a fixed algorithm for computing the transform, but instead it
adapts the DFT algorithm to details of the underlying hardware in order to maximize per-
formance. Hence, the computation of the transform is split into two phases. First, FFTW’s
planner “learns” the fastest way to compute the transform on your machine. The planner
produces a data structure called a plan that contains this information. Subsequently, the
plan is executed to transform the array of input data as dictated by the plan. The plan can
be reused as many times as needed. In typical high-performance applications, many trans-
forms of the same size are computed and, consequently, a relatively expensive initialization
of this sort is acceptable. On the other hand, if you need a single transform of a given size,
the one-time cost of the planner becomes significant. For this case, FFTW provides fast
planners based on heuristics or on previously computed plans.

FFTW supports transforms of data with arbitrary length, rank, multiplicity, and a general
memory layout. In simple cases, however, this generality may be unnecessary and confusing.
Consequently, we organized the interface to FFTW into three levels of increasing generality.

• The basic interface computes a single transform of contiguous data.

• The advanced interface computes transforms of multiple or strided arrays.

• The guru interface supports the most general data layouts, multiplicities, and strides.

We expect that most users will be best served by the basic interface, whereas the guru
interface requires careful attention to the documentation to avoid problems.

Besides the automatic performance adaptation performed by the planner, it is also possible
for advanced users to customize FFTWmanually. For example, if code space is a concern, we

http://www.fftw.org

2 FFTW 3.3.4

provide a tool that links only the subset of FFTW needed by your application. Conversely,
you may need to extend FFTW because the standard distribution is not sufficient for your
needs. For example, the standard FFTW distribution works most efficiently for arrays
whose size can be factored into small primes (2, 3, 5, and 7), and otherwise it uses a slower
general-purpose routine. If you need efficient transforms of other sizes, you can use FFTW’s
code generator, which produces fast C programs (“codelets”) for any particular array size
you may care about. For example, if you need transforms of size 513 = 19 · 33, you can
customize FFTW to support the factor 19 efficiently.

For more information regarding FFTW, see the paper, “The Design and Implementation of
FFTW3,” by M. Frigo and S. G. Johnson, which was an invited paper in Proc. IEEE 93
(2), p. 216 (2005). The code generator is described in the paper “A fast Fourier transform
compiler”, by M. Frigo, in the Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Atlanta, Georgia, May 1999.
These papers, along with the latest version of FFTW, the FAQ, benchmarks, and other
links, are available at the FFTW home page.

The current version of FFTW incorporates many good ideas from the past thirty years
of FFT literature. In one way or another, FFTW uses the Cooley-Tukey algorithm, the
prime factor algorithm, Rader’s algorithm for prime sizes, and a split-radix algorithm (with
a “conjugate-pair” variation pointed out to us by Dan Bernstein). FFTW’s code generator
also produces new algorithms that we do not completely understand. The reader is referred
to the cited papers for the appropriate references.

The rest of this manual is organized as follows. We first discuss the sequential (single-
processor) implementation. We start by describing the basic interface/features of FFTW
in Chapter 2 [Tutorial], page 3. Next, Chapter 3 [Other Important Topics], page 15 dis-
cusses data alignment (see Section 3.1 [SIMD alignment and fftw malloc], page 15), the
storage scheme of multi-dimensional arrays (see Section 3.2 [Multi-dimensional Array For-
mat], page 15), and FFTW’s mechanism for storing plans on disk (see Section 3.3 [Words
of Wisdom-Saving Plans], page 18). Next, Chapter 4 [FFTW Reference], page 21 provides
comprehensive documentation of all FFTW’s features. Parallel transforms are discussed in
their own chapters: Chapter 5 [Multi-threaded FFTW], page 49 and Chapter 6 [Distributed-
memory FFTW with MPI], page 53. Fortran programmers can also use FFTW, as described
in Chapter 8 [Calling FFTW from Legacy Fortran], page 87 and Chapter 7 [Calling FFTW
from Modern Fortran], page 77. Chapter 10 [Installation and Customization], page 97 ex-
plains how to install FFTW in your computer system and how to adapt FFTW to your
needs. License and copyright information is given in Chapter 12 [License and Copyright],
page 105. Finally, we thank all the people who helped us in Chapter 11 [Acknowledgments],
page 103.

http://www.fftw.org

Chapter 2: Tutorial 3

2 Tutorial

This chapter describes the basic usage of FFTW, i.e., how to compute the Fourier transform
of a single array. This chapter tells the truth, but not the whole truth. Specifically, FFTW
implements additional routines and flags that are not documented here, although in many
cases we try to indicate where added capabilities exist. For more complete information, see
Chapter 4 [FFTW Reference], page 21. (Note that you need to compile and install FFTW
before you can use it in a program. For the details of the installation, see Chapter 10
[Installation and Customization], page 97.)

We recommend that you read this tutorial in order.1 At the least, read the first section (see
Section 2.1 [Complex One-Dimensional DFTs], page 3) before reading any of the others,
even if your main interest lies in one of the other transform types.

Users of FFTW version 2 and earlier may also want to read Chapter 9 [Upgrading from
FFTW version 2], page 93.

2.1 Complex One-Dimensional DFTs

Plan: To bother about the best method of accomplishing an accidental result.
[Ambrose Bierce, The Enlarged Devil’s Dictionary.]

The basic usage of FFTW to compute a one-dimensional DFT of size N is simple, and it
typically looks something like this code:

#include <fftw3.h>

...

{

fftw_complex *in, *out;

fftw_plan p;

...

in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);

out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);

p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

...

fftw_execute(p); /* repeat as needed */

...

fftw_destroy_plan(p);

fftw_free(in); fftw_free(out);

}

You must link this code with the fftw3 library. On Unix systems, link with -lfftw3 -lm.

The example code first allocates the input and output arrays. You can allocate them in
any way that you like, but we recommend using fftw_malloc, which behaves like malloc

except that it properly aligns the array when SIMD instructions (such as SSE and Altivec)
are available (see Section 3.1 [SIMD alignment and fftw malloc], page 15). [Alternatively,
we provide a convenient wrapper function fftw_alloc_complex(N) which has the same
effect.]

1 You can read the tutorial in bit-reversed order after computing your first transform.

4 FFTW 3.3.4

The data is an array of type fftw_complex, which is by default a double[2] composed of
the real (in[i][0]) and imaginary (in[i][1]) parts of a complex number.

The next step is to create a plan, which is an object that contains all the data that FFTW
needs to compute the FFT. This function creates the plan:

fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

The first argument, n, is the size of the transform you are trying to compute. The size n

can be any positive integer, but sizes that are products of small factors are transformed
most efficiently (although prime sizes still use an O(n log n) algorithm).

The next two arguments are pointers to the input and output arrays of the transform.
These pointers can be equal, indicating an in-place transform.

The fourth argument, sign, can be either FFTW_FORWARD (-1) or FFTW_BACKWARD (+1), and
indicates the direction of the transform you are interested in; technically, it is the sign of
the exponent in the transform.

The flags argument is usually either FFTW_MEASURE or FFTW_ESTIMATE. FFTW_MEASURE

instructs FFTW to run and measure the execution time of several FFTs in order to find the
best way to compute the transform of size n. This process takes some time (usually a few
seconds), depending on your machine and on the size of the transform. FFTW_ESTIMATE,
on the contrary, does not run any computation and just builds a reasonable plan that is
probably sub-optimal. In short, if your program performs many transforms of the same size
and initialization time is not important, use FFTW_MEASURE; otherwise use the estimate.

You must create the plan before initializing the input, because FFTW_MEASURE overwrites the
in/out arrays. (Technically, FFTW_ESTIMATE does not touch your arrays, but you should
always create plans first just to be sure.)

Once the plan has been created, you can use it as many times as you like for transforms on
the specified in/out arrays, computing the actual transforms via fftw_execute(plan):

void fftw_execute(const fftw_plan plan);

The DFT results are stored in-order in the array out, with the zero-frequency (DC) com-
ponent in out[0]. If in != out, the transform is out-of-place and the input array in is not
modified. Otherwise, the input array is overwritten with the transform.

If you want to transform a different array of the same size, you can create a new plan with
fftw_plan_dft_1d and FFTW automatically reuses the information from the previous
plan, if possible. Alternatively, with the “guru” interface you can apply a given plan to a
different array, if you are careful. See Chapter 4 [FFTW Reference], page 21.

When you are done with the plan, you deallocate it by calling fftw_destroy_plan(plan):

void fftw_destroy_plan(fftw_plan plan);

If you allocate an array with fftw_malloc() you must deallocate it with fftw_free(). Do
not use free() or, heaven forbid, delete.

FFTW computes an unnormalized DFT. Thus, computing a forward followed by a backward
transform (or vice versa) results in the original array scaled by n. For the definition of the
DFT, see Section 4.8 [What FFTW Really Computes], page 42.

Chapter 2: Tutorial 5

If you have a C compiler, such as gcc, that supports the C99 standard, and you #include

<complex.h> before <fftw3.h>, then fftw_complex is the native double-precision complex
type and you can manipulate it with ordinary arithmetic. Otherwise, FFTW defines its
own complex type, which is bit-compatible with the C99 complex type. See Section 4.1.1
[Complex numbers], page 21. (The C++ <complex> template class may also be usable via
a typecast.)

To use single or long-double precision versions of FFTW, replace the fftw_ prefix by fftwf_
or fftwl_ and link with -lfftw3f or -lfftw3l, but use the same <fftw3.h> header file.

Many more flags exist besides FFTW_MEASURE and FFTW_ESTIMATE. For example, use FFTW_
PATIENT if you’re willing to wait even longer for a possibly even faster plan (see Chapter 4
[FFTW Reference], page 21). You can also save plans for future use, as described by
Section 3.3 [Words of Wisdom-Saving Plans], page 18.

2.2 Complex Multi-Dimensional DFTs

Multi-dimensional transforms work much the same way as one-dimensional transforms: you
allocate arrays of fftw_complex (preferably using fftw_malloc), create an fftw_plan,
execute it as many times as you want with fftw_execute(plan), and clean up with fftw_

destroy_plan(plan) (and fftw_free).

FFTW provides two routines for creating plans for 2d and 3d transforms, and one routine
for creating plans of arbitrary dimensionality. The 2d and 3d routines have the following
signature:

fftw_plan fftw_plan_dft_2d(int n0, int n1,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

These routines create plans for n0 by n1 two-dimensional (2d) transforms and n0 by n1 by
n2 3d transforms, respectively. All of these transforms operate on contiguous arrays in the
C-standard row-major order, so that the last dimension has the fastest-varying index in
the array. This layout is described further in Section 3.2 [Multi-dimensional Array Format],
page 15.

FFTW can also compute transforms of higher dimensionality. In order to avoid confusion
between the various meanings of the the word “dimension”, we use the term rank to denote
the number of independent indices in an array.2 For example, we say that a 2d transform
has rank 2, a 3d transform has rank 3, and so on. You can plan transforms of arbitrary
rank by means of the following function:

fftw_plan fftw_plan_dft(int rank, const int *n,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

2 The term “rank” is commonly used in the APL, FORTRAN, and Common Lisp traditions, although it is
not so common in the C world.

6 FFTW 3.3.4

Here, n is a pointer to an array n[rank] denoting an n[0] by n[1] by . . . by n[rank-1]

transform. Thus, for example, the call

fftw_plan_dft_2d(n0, n1, in, out, sign, flags);

is equivalent to the following code fragment:

int n[2];

n[0] = n0;

n[1] = n1;

fftw_plan_dft(2, n, in, out, sign, flags);

fftw_plan_dft is not restricted to 2d and 3d transforms, however, but it can plan trans-
forms of arbitrary rank.

You may have noticed that all the planner routines described so far have overlapping func-
tionality. For example, you can plan a 1d or 2d transform by using fftw_plan_dft with
a rank of 1 or 2, or even by calling fftw_plan_dft_3d with n0 and/or n1 equal to 1

(with no loss in efficiency). This pattern continues, and FFTW’s planning routines in gen-
eral form a “partial order,” sequences of interfaces with strictly increasing generality but
correspondingly greater complexity.

fftw_plan_dft is the most general complex-DFT routine that we describe in this tutorial,
but there are also the advanced and guru interfaces, which allow one to efficiently combine
multiple/strided transforms into a single FFTW plan, transform a subset of a larger multi-
dimensional array, and/or to handle more general complex-number formats. For more
information, see Chapter 4 [FFTW Reference], page 21.

2.3 One-Dimensional DFTs of Real Data

In many practical applications, the input data in[i] are purely real numbers, in which case
the DFT output satisfies the “Hermitian” redundancy: out[i] is the conjugate of out[n-
i]. It is possible to take advantage of these circumstances in order to achieve roughly a
factor of two improvement in both speed and memory usage.

In exchange for these speed and space advantages, the user sacrifices some of the simplicity
of FFTW’s complex transforms. First of all, the input and output arrays are of different
sizes and types: the input is n real numbers, while the output is n/2+1 complex numbers
(the non-redundant outputs); this also requires slight “padding” of the input array for
in-place transforms. Second, the inverse transform (complex to real) has the side-effect of
overwriting its input array, by default. Neither of these inconveniences should pose a serious
problem for users, but it is important to be aware of them.

The routines to perform real-data transforms are almost the same as those for complex
transforms: you allocate arrays of double and/or fftw_complex (preferably using fftw_

malloc or fftw_alloc_complex), create an fftw_plan, execute it as many times as you
want with fftw_execute(plan), and clean up with fftw_destroy_plan(plan) (and fftw_

free). The only differences are that the input (or output) is of type double and there are
new routines to create the plan. In one dimension:

fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out,

unsigned flags);

Chapter 2: Tutorial 7

fftw_plan fftw_plan_dft_c2r_1d(int n, fftw_complex *in, double *out,

unsigned flags);

for the real input to complex-Hermitian output (r2c) and complex-Hermitian input to real
output (c2r) transforms. Unlike the complex DFT planner, there is no sign argument.
Instead, r2c DFTs are always FFTW_FORWARD and c2r DFTs are always FFTW_BACKWARD.
(For single/long-double precision fftwf and fftwl, double should be replaced by float

and long double, respectively.)

Here, n is the “logical” size of the DFT, not necessarily the physical size of the array. In
particular, the real (double) array has n elements, while the complex (fftw_complex) array
has n/2+1 elements (where the division is rounded down). For an in-place transform, in
and out are aliased to the same array, which must be big enough to hold both; so, the
real array would actually have 2*(n/2+1) elements, where the elements beyond the first n
are unused padding. (Note that this is very different from the concept of “zero-padding” a
transform to a larger length, which changes the logical size of the DFT by actually adding
new input data.) The kth element of the complex array is exactly the same as the kth
element of the corresponding complex DFT. All positive n are supported; products of small
factors are most efficient, but an O(n log n) algorithm is used even for prime sizes.

As noted above, the c2r transform destroys its input array even for out-of-place transforms.
This can be prevented, if necessary, by including FFTW_PRESERVE_INPUT in the flags, with
unfortunately some sacrifice in performance. This flag is also not currently supported for
multi-dimensional real DFTs (next section).

Readers familiar with DFTs of real data will recall that the 0th (the “DC”) and n/2-th (the
“Nyquist” frequency, when n is even) elements of the complex output are purely real. Some
implementations therefore store the Nyquist element where the DC imaginary part would
go, in order to make the input and output arrays the same size. Such packing, however, does
not generalize well to multi-dimensional transforms, and the space savings are miniscule in
any case; FFTW does not support it.

An alternative interface for one-dimensional r2c and c2r DFTs can be found in the ‘r2r’
interface (see Section 2.5.1 [The Halfcomplex-format DFT], page 11), with “halfcomplex”-
format output that is the same size (and type) as the input array. That interface, although
it is not very useful for multi-dimensional transforms, may sometimes yield better perfor-
mance.

2.4 Multi-Dimensional DFTs of Real Data

Multi-dimensional DFTs of real data use the following planner routines:

fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,

double *in, fftw_complex *out,

unsigned flags);

fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,

double *in, fftw_complex *out,

unsigned flags);

fftw_plan fftw_plan_dft_r2c(int rank, const int *n,

double *in, fftw_complex *out,

unsigned flags);

8 FFTW 3.3.4

as well as the corresponding c2r routines with the input/output types swapped. These
routines work similarly to their complex analogues, except for the fact that here the complex
output array is cut roughly in half and the real array requires padding for in-place transforms
(as in 1d, above).

As before, n is the logical size of the array, and the consequences of this on the the format
of the complex arrays deserve careful attention. Suppose that the real data has dimensions
n0 × n1 × n2 × · · · × nd−1 (in row-major order). Then, after an r2c transform, the output
is an n0 × n1 × n2 × · · · × (nd−1/2 + 1) array of fftw_complex values in row-major order,
corresponding to slightly over half of the output of the corresponding complex DFT. (The
division is rounded down.) The ordering of the data is otherwise exactly the same as in the
complex-DFT case.

For out-of-place transforms, this is the end of the story: the real data is stored as a row-
major array of size n0×n1×n2× · · · ×nd−1 and the complex data is stored as a row-major
array of size n0 × n1 × n2 × · · · × (nd−1/2 + 1) .

For in-place transforms, however, extra padding of the real-data array is necessary because
the complex array is larger than the real array, and the two arrays share the same memory
locations. Thus, for in-place transforms, the final dimension of the real-data array must
be padded with extra values to accommodate the size of the complex data—two values if
the last dimension is even and one if it is odd. That is, the last dimension of the real data
must physically contain 2(nd−1/2 + 1) double values (exactly enough to hold the complex
data). This physical array size does not, however, change the logical array size—only nd−1
values are actually stored in the last dimension, and nd−1 is the last dimension passed to
the plan-creation routine.

For example, consider the transform of a two-dimensional real array of size n0 by n1. The
output of the r2c transform is a two-dimensional complex array of size n0 by n1/2+1, where
the y dimension has been cut nearly in half because of redundancies in the output. Because
fftw_complex is twice the size of double, the output array is slightly bigger than the input
array. Thus, if we want to compute the transform in place, we must pad the input array so
that it is of size n0 by 2*(n1/2+1). If n1 is even, then there are two padding elements at
the end of each row (which need not be initialized, as they are only used for output).

Chapter 2: Tutorial 9

...

ny + 2−ny%2 = 2*(ny/2+1)

nx

0

ny+1

0

nx−1

(p
a

d
d
in

g
)

in
p

u
t,

 i
n

−
p

la
c

e

0

1

2

3

ny−4

ny−2

ny−1

ny−3

ny+2

ny+3

ny

ny+1

...

ny/2+1

nx

0

ny/2

0

nx−1

= double

= fftw_complex

o
u

tp
u

t

0

1

ny/2−2

ny/2−1

ny/2+1

ny/2

...

ny

nx

0

ny−1

0

nx−1

in
p

u
t,

 o
u

t−
o

f−
p

la
c

e

0

1

2

3

ny−4

ny−2

ny−1

ny−3

ny

ny+1

Figure 2.1: Illustration of the data layout for a 2d nx by ny real-to-complex transform.

Figure 2.1 depicts the input and output arrays just described, for both the out-of-place and
in-place transforms (with the arrows indicating consecutive memory locations):

These transforms are unnormalized, so an r2c followed by a c2r transform (or vice versa)
will result in the original data scaled by the number of real data elements—that is, the
product of the (logical) dimensions of the real data.

(Because the last dimension is treated specially, if it is equal to 1 the transform is not equiv-
alent to a lower-dimensional r2c/c2r transform. In that case, the last complex dimension
also has size 1 (=1/2+1), and no advantage is gained over the complex transforms.)

10 FFTW 3.3.4

2.5 More DFTs of Real Data

FFTW supports several other transform types via a unified r2r (real-to-real) interface, so
called because it takes a real (double) array and outputs a real array of the same size.
These r2r transforms currently fall into three categories: DFTs of real input and complex-
Hermitian output in halfcomplex format, DFTs of real input with even/odd symmetry
(a.k.a. discrete cosine/sine transforms, DCTs/DSTs), and discrete Hartley transforms
(DHTs), all described in more detail by the following sections.

The r2r transforms follow the by now familiar interface of creating an fftw_plan, exe-
cuting it with fftw_execute(plan), and destroying it with fftw_destroy_plan(plan).
Furthermore, all r2r transforms share the same planner interface:

fftw_plan fftw_plan_r2r_1d(int n, double *in, double *out,

fftw_r2r_kind kind, unsigned flags);

fftw_plan fftw_plan_r2r_2d(int n0, int n1, double *in, double *out,

fftw_r2r_kind kind0, fftw_r2r_kind kind1,

unsigned flags);

fftw_plan fftw_plan_r2r_3d(int n0, int n1, int n2,

double *in, double *out,

fftw_r2r_kind kind0,

fftw_r2r_kind kind1,

fftw_r2r_kind kind2,

unsigned flags);

fftw_plan fftw_plan_r2r(int rank, const int *n, double *in, double *out,

const fftw_r2r_kind *kind, unsigned flags);

Just as for the complex DFT, these plan 1d/2d/3d/multi-dimensional transforms for con-
tiguous arrays in row-major order, transforming (real) input to output of the same size,
where n specifies the physical dimensions of the arrays. All positive n are supported (with
the exception of n=1 for the FFTW_REDFT00 kind, noted in the real-even subsection below);
products of small factors are most efficient (factorizing n-1 and n+1 for FFTW_REDFT00 and
FFTW_RODFT00 kinds, described below), but an O(n log n) algorithm is used even for prime
sizes.

Each dimension has a kind parameter, of type fftw_r2r_kind, specifying the kind of r2r
transform to be used for that dimension. (In the case of fftw_plan_r2r, this is an array
kind[rank] where kind[i] is the transform kind for the dimension n[i].) The kind can
be one of a set of predefined constants, defined in the following subsections.

In other words, FFTW computes the separable product of the specified r2r transforms
over each dimension, which can be used e.g. for partial differential equations with mixed
boundary conditions. (For some r2r kinds, notably the halfcomplex DFT and the DHT,
such a separable product is somewhat problematic in more than one dimension, however,
as is described below.)

In the current version of FFTW, all r2r transforms except for the halfcomplex type are com-
puted via pre- or post-processing of halfcomplex transforms, and they are therefore not as
fast as they could be. Since most other general DCT/DST codes employ a similar algorithm,
however, FFTW’s implementation should provide at least competitive performance.

Chapter 2: Tutorial 11

2.5.1 The Halfcomplex-format DFT

An r2r kind of FFTW_R2HC (r2hc) corresponds to an r2c DFT (see Section 2.3
[One-Dimensional DFTs of Real Data], page 6) but with “halfcomplex” format output,
and may sometimes be faster and/or more convenient than the latter. The inverse hc2r
transform is of kind FFTW_HC2R. This consists of the non-redundant half of the complex
output for a 1d real-input DFT of size n, stored as a sequence of n real numbers (double)
in the format:

r0, r1, r2, . . . , rn/2, i(n+1)/2−1, . . . , i2, i1

Here, rk is the real part of the kth output, and ik is the imaginary part. (Division by 2
is rounded down.) For a halfcomplex array hc[n], the kth component thus has its real
part in hc[k] and its imaginary part in hc[n-k], with the exception of k == 0 or n/2 (the
latter only if n is even)—in these two cases, the imaginary part is zero due to symmetries
of the real-input DFT, and is not stored. Thus, the r2hc transform of n real values is a
halfcomplex array of length n, and vice versa for hc2r.

Aside from the differing format, the output of FFTW_R2HC/FFTW_HC2R is otherwise exactly
the same as for the corresponding 1d r2c/c2r transform (i.e. FFTW_FORWARD/FFTW_BACKWARD
transforms, respectively). Recall that these transforms are unnormalized, so r2hc followed
by hc2r will result in the original data multiplied by n. Furthermore, like the c2r transform,
an out-of-place hc2r transform will destroy its input array.

Although these halfcomplex transforms can be used with the multi-dimensional r2r interface,
the interpretation of such a separable product of transforms along each dimension is prob-
lematic. For example, consider a two-dimensional n0 by n1, r2hc by r2hc transform planned
by fftw_plan_r2r_2d(n0, n1, in, out, FFTW_R2HC, FFTW_R2HC, FFTW_MEASURE). Con-
ceptually, FFTW first transforms the rows (of size n1) to produce halfcomplex rows, and
then transforms the columns (of size n0). Half of these column transforms, however, are
of imaginary parts, and should therefore be multiplied by i and combined with the r2hc
transforms of the real columns to produce the 2d DFT amplitudes; FFTW’s r2r transform
does not perform this combination for you. Thus, if a multi-dimensional real-input/output
DFT is required, we recommend using the ordinary r2c/c2r interface (see Section 2.4 [Multi-
Dimensional DFTs of Real Data], page 7).

2.5.2 Real even/odd DFTs (cosine/sine transforms)

The Fourier transform of a real-even function f(−x) = f(x) is real-even, and i times
the Fourier transform of a real-odd function f(−x) = −f(x) is real-odd. Similar results
hold for a discrete Fourier transform, and thus for these symmetries the need for complex
inputs/outputs is entirely eliminated. Moreover, one gains a factor of two in speed/space
from the fact that the data are real, and an additional factor of two from the even/odd
symmetry: only the non-redundant (first) half of the array need be stored. The result is
the real-even DFT (REDFT) and the real-odd DFT (RODFT), also known as the discrete
cosine and sine transforms (DCT and DST), respectively.

(In this section, we describe the 1d transforms; multi-dimensional transforms are just a
separable product of these transforms operating along each dimension.)

12 FFTW 3.3.4

Because of the discrete sampling, one has an additional choice: is the data even/odd around
a sampling point, or around the point halfway between two samples? The latter corresponds
to shifting the samples by half an interval, and gives rise to several transform variants
denoted by REDFTab and RODFTab: a and b are 0 or 1, and indicate whether the input
(a) and/or output (b) are shifted by half a sample (1 means it is shifted). These are also
known as types I-IV of the DCT and DST, and all four types are supported by FFTW’s
r2r interface.3

The r2r kinds for the various REDFT and RODFT types supported by FFTW, along with
the boundary conditions at both ends of the input array (n real numbers in[j=0..n-1]),
are:

• FFTW_REDFT00 (DCT-I): even around j = 0 and even around j = n− 1.

• FFTW_REDFT10 (DCT-II, “the” DCT): even around j = −0.5 and even around j =
n− 0.5.

• FFTW_REDFT01 (DCT-III, “the” IDCT): even around j = 0 and odd around j = n.

• FFTW_REDFT11 (DCT-IV): even around j = −0.5 and odd around j = n− 0.5.

• FFTW_RODFT00 (DST-I): odd around j = −1 and odd around j = n.

• FFTW_RODFT10 (DST-II): odd around j = −0.5 and odd around j = n− 0.5.

• FFTW_RODFT01 (DST-III): odd around j = −1 and even around j = n− 1.

• FFTW_RODFT11 (DST-IV): odd around j = −0.5 and even around j = n− 0.5.

Note that these symmetries apply to the “logical” array being transformed; there are no
constraints on your physical input data. So, for example, if you specify a size-5 REDFT00
(DCT-I) of the data abcde, it corresponds to the DFT of the logical even array abcdedcb of
size 8. A size-4 REDFT10 (DCT-II) of the data abcd corresponds to the size-8 logical DFT
of the even array abcddcba, shifted by half a sample.

All of these transforms are invertible. The inverse of R*DFT00 is R*DFT00; of R*DFT10 is
R*DFT01 and vice versa (these are often called simply “the” DCT and IDCT, respectively);
and of R*DFT11 is R*DFT11. However, the transforms computed by FFTW are unnor-
malized, exactly like the corresponding real and complex DFTs, so computing a transform
followed by its inverse yields the original array scaled by N , where N is the logical DFT
size. For REDFT00, N = 2(n− 1); for RODFT00, N = 2(n+ 1); otherwise, N = 2n.

Note that the boundary conditions of the transform output array are given by the input
boundary conditions of the inverse transform. Thus, the above transforms are all inequiva-
lent in terms of input/output boundary conditions, even neglecting the 0.5 shift difference.

FFTW is most efficient when N is a product of small factors; note that this differs from the
factorization of the physical size n for REDFT00 and RODFT00! There is another oddity:
n=1 REDFT00 transforms correspond to N = 0, and so are not defined (the planner will
return NULL). Otherwise, any positive n is supported.

For the precise mathematical definitions of these transforms as used by FFTW, see
Section 4.8 [What FFTW Really Computes], page 42. (For people accustomed to the

3 There are also type V-VIII transforms, which correspond to a logical DFT of odd size N , independent of
whether the physical size n is odd, but we do not support these variants.

Chapter 2: Tutorial 13

DCT/DST, FFTW’s definitions have a coefficient of 2 in front of the cos/sin functions so
that they correspond precisely to an even/odd DFT of size N . Some authors also include
additional multiplicative factors of

√
2 for selected inputs and outputs; this makes the

transform orthogonal, but sacrifices the direct equivalence to a symmetric DFT.)

Which type do you need?

Since the required flavor of even/odd DFT depends upon your problem, you are the best
judge of this choice, but we can make a few comments on relative efficiency to help you
in your selection. In particular, R*DFT01 and R*DFT10 tend to be slightly faster than
R*DFT11 (especially for odd sizes), while the R*DFT00 transforms are sometimes signifi-
cantly slower (especially for even sizes).4

Thus, if only the boundary conditions on the transform inputs are specified, we generally
recommend R*DFT10 over R*DFT00 and R*DFT01 over R*DFT11 (unless the half-sample
shift or the self-inverse property is significant for your problem).

If performance is important to you and you are using only small sizes (say n < 200), e.g. for
multi-dimensional transforms, then you might consider generating hard-coded transforms
of those sizes and types that you are interested in (see Section 10.4 [Generating your own
code], page 101).

We are interested in hearing what types of symmetric transforms you find most useful.

2.5.3 The Discrete Hartley Transform

If you are planning to use the DHT because you’ve heard that it is “faster” than the DFT
(FFT), stop here. The DHT is not faster than the DFT. That story is an old but enduring
misconception that was debunked in 1987.

The discrete Hartley transform (DHT) is an invertible linear transform closely related to
the DFT. In the DFT, one multiplies each input by cos− i ∗ sin (a complex exponential),
whereas in the DHT each input is multiplied by simply cos+sin. Thus, the DHT transforms
n real numbers to n real numbers, and has the convenient property of being its own inverse.
In FFTW, a DHT (of any positive n) can be specified by an r2r kind of FFTW_DHT.

Like the DFT, in FFTW the DHT is unnormalized, so computing a DHT of size n followed
by another DHT of the same size will result in the original array multiplied by n.

The DHT was originally proposed as a more efficient alternative to the DFT for real data,
but it was subsequently shown that a specialized DFT (such as FFTW’s r2hc or r2c trans-
forms) could be just as fast. In FFTW, the DHT is actually computed by post-processing
an r2hc transform, so there is ordinarily no reason to prefer it from a performance per-

4 R*DFT00 is sometimes slower in FFTW because we discovered that the standard algorithm for computing
this by a pre/post-processed real DFT—the algorithm used in FFTPACK, Numerical Recipes, and other
sources for decades now—has serious numerical problems: it already loses several decimal places of accuracy
for 16k sizes. There seem to be only two alternatives in the literature that do not suffer similarly: a recursive
decomposition into smaller DCTs, which would require a large set of codelets for efficiency and generality,
or sacrificing a factor of ∼ 2 in speed to use a real DFT of twice the size. We currently employ the latter
technique for general n, as well as a limited form of the former method: a split-radix decomposition when
n is odd (N a multiple of 4). For N containing many factors of 2, the split-radix method seems to recover
most of the speed of the standard algorithm without the accuracy tradeoff.

14 FFTW 3.3.4

spective.5 However, we have heard rumors that the DHT might be the most appropriate
transform in its own right for certain applications, and we would be very interested to hear
from anyone who finds it useful.

If FFTW_DHT is specified for multiple dimensions of a multi-dimensional transform, FFTW
computes the separable product of 1d DHTs along each dimension. Unfortunately, this is
not quite the same thing as a true multi-dimensional DHT; you can compute the latter, if
necessary, with at most rank-1 post-processing passes [see e.g. H. Hao and R. N. Bracewell,
Proc. IEEE 75, 264–266 (1987)].

For the precise mathematical definition of the DHT as used by FFTW, see Section 4.8
[What FFTW Really Computes], page 42.

5 We provide the DHT mainly as a byproduct of some internal algorithms. FFTW computes a real in-
put/output DFT of prime size by re-expressing it as a DHT plus post/pre-processing and then using Rader’s
prime-DFT algorithm adapted to the DHT.

Chapter 3: Other Important Topics 15

3 Other Important Topics

3.1 SIMD alignment and fftw malloc

SIMD, which stands for “Single Instruction Multiple Data,” is a set of special operations
supported by some processors to perform a single operation on several numbers (usually
2 or 4) simultaneously. SIMD floating-point instructions are available on several popular
CPUs: SSE/SSE2/AVX on recent x86/x86-64 processors, AltiVec (single precision) on some
PowerPCs (Apple G4 and higher), NEON on some ARM models, and MIPS Paired Single
(currently only in FFTW 3.2.x). FFTW can be compiled to support the SIMD instructions
on any of these systems.

A program linking to an FFTW library compiled with SIMD support can obtain a nonneg-
ligible speedup for most complex and r2c/c2r transforms. In order to obtain this speedup,
however, the arrays of complex (or real) data passed to FFTW must be specially aligned in
memory (typically 16-byte aligned), and often this alignment is more stringent than that
provided by the usual malloc (etc.) allocation routines.

In order to guarantee proper alignment for SIMD, therefore, in case your program is ever
linked against a SIMD-using FFTW, we recommend allocating your transform data with
fftw_malloc and de-allocating it with fftw_free. These have exactly the same interface
and behavior as malloc/free, except that for a SIMD FFTW they ensure that the returned
pointer has the necessary alignment (by calling memalign or its equivalent on your OS).

You are not required to use fftw_malloc. You can allocate your data in any way that you
like, from malloc to new (in C++) to a fixed-size array declaration. If the array happens
not to be properly aligned, FFTW will not use the SIMD extensions.

Since fftw_malloc only ever needs to be used for real and complex arrays, we provide two
convenient wrapper routines fftw_alloc_real(N) and fftw_alloc_complex(N) that are
equivalent to (double*)fftw_malloc(sizeof(double) * N) and (fftw_complex*)fftw_

malloc(sizeof(fftw_complex) * N), respectively (or their equivalents in other precisions).

3.2 Multi-dimensional Array Format

This section describes the format in which multi-dimensional arrays are stored in FFTW.
We felt that a detailed discussion of this topic was necessary. Since several different formats
are common, this topic is often a source of confusion.

3.2.1 Row-major Format

The multi-dimensional arrays passed to fftw_plan_dft etcetera are expected to be stored
as a single contiguous block in row-major order (sometimes called “C order”). Basically,
this means that as you step through adjacent memory locations, the first dimension’s index
varies most slowly and the last dimension’s index varies most quickly.

To be more explicit, let us consider an array of rank d whose dimensions are n0×n1×n2×
· · ·×nd−1 . Now, we specify a location in the array by a sequence of d (zero-based) indices,
one for each dimension: (i0, i1, i2, . . . , id−1). If the array is stored in row-major order, then
this element is located at the position id−1 + nd−1(id−2 + nd−2(. . .+ n1i0)).

16 FFTW 3.3.4

Note that, for the ordinary complex DFT, each element of the array must be of type fftw_
complex; i.e. a (real, imaginary) pair of (double-precision) numbers.

In the advanced FFTW interface, the physical dimensions n from which the indices are
computed can be different from (larger than) the logical dimensions of the transform to be
computed, in order to transform a subset of a larger array. Note also that, in the advanced
interface, the expression above is multiplied by a stride to get the actual array index—this
is useful in situations where each element of the multi-dimensional array is actually a data
structure (or another array), and you just want to transform a single field. In the basic
interface, however, the stride is 1.

3.2.2 Column-major Format

Readers from the Fortran world are used to arrays stored in column-major order (sometimes
called “Fortran order”). This is essentially the exact opposite of row-major order in that,
here, the first dimension’s index varies most quickly.

If you have an array stored in column-major order and wish to transform it using FFTW,
it is quite easy to do. When creating the plan, simply pass the dimensions of the array to
the planner in reverse order. For example, if your array is a rank three N x M x L matrix in
column-major order, you should pass the dimensions of the array as if it were an L x M x N

matrix (which it is, from the perspective of FFTW). This is done for you automatically by
the FFTW legacy-Fortran interface (see Chapter 8 [Calling FFTW from Legacy Fortran],
page 87), but you must do it manually with the modern Fortran interface (see Section 7.2
[Reversing array dimensions], page 78).

3.2.3 Fixed-size Arrays in C

A multi-dimensional array whose size is declared at compile time in C is already in row-
major order. You don’t have to do anything special to transform it. For example:

{

fftw_complex data[N0][N1][N2];

fftw_plan plan;

...

plan = fftw_plan_dft_3d(N0, N1, N2, &data[0][0][0], &data[0][0][0],

FFTW_FORWARD, FFTW_ESTIMATE);

...

}

This will plan a 3d in-place transform of size N0 x N1 x N2. Notice how we took the address
of the zero-th element to pass to the planner (we could also have used a typecast).

However, we tend to discourage users from declaring their arrays in this way, for two reasons.
First, this allocates the array on the stack (“automatic” storage), which has a very limited
size on most operating systems (declaring an array with more than a few thousand elements
will often cause a crash). (You can get around this limitation on many systems by declaring
the array as static and/or global, but that has its own drawbacks.) Second, it may not
optimally align the array for use with a SIMD FFTW (see Section 3.1 [SIMD alignment and
fftw malloc], page 15). Instead, we recommend using fftw_malloc, as described below.

Chapter 3: Other Important Topics 17

3.2.4 Dynamic Arrays in C

We recommend allocating most arrays dynamically, with fftw_malloc. This isn’t too hard
to do, although it is not as straightforward for multi-dimensional arrays as it is for one-
dimensional arrays.

Creating the array is simple: using a dynamic-allocation routine like fftw_malloc, allocate
an array big enough to store N fftw_complex values (for a complex DFT), where N is the
product of the sizes of the array dimensions (i.e. the total number of complex values in the
array). For example, here is code to allocate a 5× 12× 27 rank-3 array:

fftw_complex *an_array;

an_array = (fftw_complex*) fftw_malloc(5*12*27 * sizeof(fftw_complex));

Accessing the array elements, however, is more tricky—you can’t simply use multiple ap-
plications of the ‘[]’ operator like you could for fixed-size arrays. Instead, you have to
explicitly compute the offset into the array using the formula given earlier for row-major
arrays. For example, to reference the (i, j, k)-th element of the array allocated above, you
would use the expression an_array[k + 27 * (j + 12 * i)].

This pain can be alleviated somewhat by defining appropriate macros, or, in C++, creating
a class and overloading the ‘()’ operator. The recent C99 standard provides a way to
reinterpret the dynamic array as a “variable-length” multi-dimensional array amenable to
‘[]’, but this feature is not yet widely supported by compilers.

3.2.5 Dynamic Arrays in C—The Wrong Way

A different method for allocating multi-dimensional arrays in C is often suggested that is
incompatible with FFTW: using it will cause FFTW to die a painful death. We discuss the
technique here, however, because it is so commonly known and used. This method is to
create arrays of pointers of arrays of pointers of . . . etcetera. For example, the analogue in
this method to the example above is:

int i,j;

fftw_complex ***a_bad_array; /* another way to make a 5x12x27 array */

a_bad_array = (fftw_complex ***) malloc(5 * sizeof(fftw_complex **));

for (i = 0; i < 5; ++i) {

a_bad_array[i] =

(fftw_complex **) malloc(12 * sizeof(fftw_complex *));

for (j = 0; j < 12; ++j)

a_bad_array[i][j] =

(fftw_complex *) malloc(27 * sizeof(fftw_complex));

}

As you can see, this sort of array is inconvenient to allocate (and deallocate). On the
other hand, it has the advantage that the (i, j, k)-th element can be referenced simply by
a_bad_array[i][j][k].

If you like this technique and want to maximize convenience in accessing the array, but still
want to pass the array to FFTW, you can use a hybrid method. Allocate the array as one
contiguous block, but also declare an array of arrays of pointers that point to appropriate

18 FFTW 3.3.4

places in the block. That sort of trick is beyond the scope of this documentation; for more
information on multi-dimensional arrays in C, see the comp.lang.c FAQ.

3.3 Words of Wisdom—Saving Plans

FFTW implements a method for saving plans to disk and restoring them. In fact, what
FFTW does is more general than just saving and loading plans. The mechanism is called
wisdom. Here, we describe this feature at a high level. See Chapter 4 [FFTW Reference],
page 21, for a less casual but more complete discussion of how to use wisdom in FFTW.

Plans created with the FFTW_MEASURE, FFTW_PATIENT, or FFTW_EXHAUSTIVE options produce
near-optimal FFT performance, but may require a long time to compute because FFTW
must measure the runtime of many possible plans and select the best one. This setup is
designed for the situations where so many transforms of the same size must be computed
that the start-up time is irrelevant. For short initialization times, but slower transforms,
we have provided FFTW_ESTIMATE. The wisdom mechanism is a way to get the best of both
worlds: you compute a good plan once, save it to disk, and later reload it as many times as
necessary. The wisdom mechanism can actually save and reload many plans at once, not
just one.

Whenever you create a plan, the FFTW planner accumulates wisdom, which is information
sufficient to reconstruct the plan. After planning, you can save this information to disk by
means of the function:

int fftw_export_wisdom_to_filename(const char *filename);

(This function returns non-zero on success.)

The next time you run the program, you can restore the wisdom with fftw_import_wisdom_

from_filename (which also returns non-zero on success), and then recreate the plan using
the same flags as before.

int fftw_import_wisdom_from_filename(const char *filename);

Wisdom is automatically used for any size to which it is applicable, as long as the planner
flags are not more “patient” than those with which the wisdom was created. For example,
wisdom created with FFTW_MEASURE can be used if you later plan with FFTW_ESTIMATE or
FFTW_MEASURE, but not with FFTW_PATIENT.

The wisdom is cumulative, and is stored in a global, private data structure managed in-
ternally by FFTW. The storage space required is minimal, proportional to the logarithm
of the sizes the wisdom was generated from. If memory usage is a concern, however, the
wisdom can be forgotten and its associated memory freed by calling:

void fftw_forget_wisdom(void);

Wisdom can be exported to a file, a string, or any other medium. For details, see Section 4.7
[Wisdom], page 40.

3.4 Caveats in Using Wisdom

For in much wisdom is much grief, and he that increaseth knowledge increaseth
sorrow. [Ecclesiastes 1:18]

http://c-faq.com/aryptr/dynmuldimary.html

Chapter 3: Other Important Topics 19

There are pitfalls to using wisdom, in that it can negate FFTW’s ability to adapt to
changing hardware and other conditions. For example, it would be perfectly possible to
export wisdom from a program running on one processor and import it into a program
running on another processor. Doing so, however, would mean that the second program
would use plans optimized for the first processor, instead of the one it is running on.

It should be safe to reuse wisdom as long as the hardware and program binaries remain
unchanged. (Actually, the optimal plan may change even between runs of the same binary
on identical hardware, due to differences in the virtual memory environment, etcetera. Users
seriously interested in performance should worry about this problem, too.) It is likely that,
if the same wisdom is used for two different program binaries, even running on the same
machine, the plans may be sub-optimal because of differing code alignments. It is therefore
wise to recreate wisdom every time an application is recompiled. The more the underlying
hardware and software changes between the creation of wisdom and its use, the greater
grows the risk of sub-optimal plans.

Nevertheless, if the choice is between using FFTW_ESTIMATE or using possibly-suboptimal
wisdom (created on the same machine, but for a different binary), the wisdom is likely
to be better. For this reason, we provide a function to import wisdom from a standard
system-wide location (/etc/fftw/wisdom on Unix):

int fftw_import_system_wisdom(void);

FFTW also provides a standalone program, fftw-wisdom (described by its own man page
on Unix) with which users can create wisdom, e.g. for a canonical set of sizes to store in
the system wisdom file. See Section 4.7.4 [Wisdom Utilities], page 41.

Chapter 4: FFTW Reference 21

4 FFTW Reference

This chapter provides a complete reference for all sequential (i.e., one-processor) FFTW
functions. Parallel transforms are described in later chapters.

4.1 Data Types and Files

All programs using FFTW should include its header file:

#include <fftw3.h>

You must also link to the FFTW library. On Unix, this means adding -lfftw3 -lm at the
end of the link command.

4.1.1 Complex numbers

The default FFTW interface uses double precision for all floating-point numbers, and de-
fines a fftw_complex type to hold complex numbers as:

typedef double fftw_complex[2];

Here, the [0] element holds the real part and the [1] element holds the imaginary part.

Alternatively, if you have a C compiler (such as gcc) that supports the C99 revision of the
ANSI C standard, you can use C’s new native complex type (which is binary-compatible
with the typedef above). In particular, if you #include <complex.h> before <fftw3.h>,
then fftw_complex is defined to be the native complex type and you can manipulate it
with ordinary arithmetic (e.g. x = y * (3+4*I), where x and y are fftw_complex and I is
the standard symbol for the imaginary unit);

C++ has its own complex<T> template class, defined in the standard <complex> header file.
Reportedly, the C++ standards committee has recently agreed to mandate that the storage
format used for this type be binary-compatible with the C99 type, i.e. an array T[2] with
consecutive real [0] and imaginary [1] parts. (See report http://www.open-std.org/

jtc1/sc22/WG21/docs/papers/2002/n1388.pdf WG21/N1388.) Although not part of the
official standard as of this writing, the proposal stated that: “This solution has been tested
with all current major implementations of the standard library and shown to be working.”
To the extent that this is true, if you have a variable complex<double> *x, you can pass it
directly to FFTW via reinterpret_cast<fftw_complex*>(x).

4.1.2 Precision

You can install single and long-double precision versions of FFTW, which replace double

with float and long double, respectively (see Chapter 10 [Installation and Customization],
page 97). To use these interfaces, you:

• Link to the single/long-double libraries; on Unix, -lfftw3f or -lfftw3l instead of (or
in addition to) -lfftw3. (You can link to the different-precision libraries simultane-
ously.)

• Include the same <fftw3.h> header file.

• Replace all lowercase instances of ‘fftw_’ with ‘fftwf_’ or ‘fftwl_’ for single or
long-double precision, respectively. (fftw_complex becomes fftwf_complex, fftw_
execute becomes fftwf_execute, etcetera.)

http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2002/n1388.pdf WG21/N1388
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2002/n1388.pdf WG21/N1388

22 FFTW 3.3.4

• Uppercase names, i.e. names beginning with ‘FFTW_’, remain the same.

• Replace double with float or long double for subroutine parameters.

Depending upon your compiler and/or hardware, long double may not be any more precise
than double (or may not be supported at all, although it is standard in C99).

We also support using the nonstandard __float128 quadruple-precision type provided by
recent versions of gcc on 32- and 64-bit x86 hardware (see Chapter 10 [Installation and
Customization], page 97). To use this type, link with -lfftw3q -lquadmath -lm (the
libquadmath library provided by gcc is needed for quadruple-precision trigonometric func-
tions) and use ‘fftwq_’ identifiers.

4.1.3 Memory Allocation

void *fftw_malloc(size_t n);

void fftw_free(void *p);

These are functions that behave identically to malloc and free, except that they guarantee
that the returned pointer obeys any special alignment restrictions imposed by any algorithm
in FFTW (e.g. for SIMD acceleration). See Section 3.1 [SIMD alignment and fftw malloc],
page 15.

Data allocated by fftw_malloc must be deallocated by fftw_free and not by the ordinary
free.

These routines simply call through to your operating system’s malloc or, if necessary, its
aligned equivalent (e.g. memalign), so you normally need not worry about any significant
time or space overhead. You are not required to use them to allocate your data, but we
strongly recommend it.

Note: in C++, just as with ordinary malloc, you must typecast the output of fftw_malloc
to whatever pointer type you are allocating.

We also provide the following two convenience functions to allocate real and complex arrays
with n elements, which are equivalent to (double *) fftw_malloc(sizeof(double) * n)

and (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * n), respectively:

double *fftw_alloc_real(size_t n);

fftw_complex *fftw_alloc_complex(size_t n);

The equivalent functions in other precisions allocate arrays of n elements in that precision.
e.g. fftwf_alloc_real(n) is equivalent to (float *) fftwf_malloc(sizeof(float) *

n).

4.2 Using Plans

Plans for all transform types in FFTW are stored as type fftw_plan (an opaque pointer
type), and are created by one of the various planning routines described in the follow-
ing sections. An fftw_plan contains all information necessary to compute the transform,
including the pointers to the input and output arrays.

void fftw_execute(const fftw_plan plan);

Chapter 4: FFTW Reference 23

This executes the plan, to compute the corresponding transform on the arrays for which it
was planned (which must still exist). The plan is not modified, and fftw_execute can be
called as many times as desired.

To apply a given plan to a different array, you can use the new-array execute interface. See
Section 4.6 [New-array Execute Functions], page 38.

fftw_execute (and equivalents) is the only function in FFTW guaranteed to be thread-safe;
see Section 5.4 [Thread safety], page 51.

This function:

void fftw_destroy_plan(fftw_plan plan);

deallocates the plan and all its associated data.

FFTW’s planner saves some other persistent data, such as the accumulated wisdom and
a list of algorithms available in the current configuration. If you want to deallocate all of
that and reset FFTW to the pristine state it was in when you started your program, you
can call:

void fftw_cleanup(void);

After calling fftw_cleanup, all existing plans become undefined, and you should not at-
tempt to execute them nor to destroy them. You can however create and execute/destroy
new plans, in which case FFTW starts accumulating wisdom information again.

fftw_cleanup does not deallocate your plans, however. To prevent memory leaks, you
must still call fftw_destroy_plan before executing fftw_cleanup.

Occasionally, it may useful to know FFTW’s internal “cost” metric that it uses to com-
pare plans to one another; this cost is proportional to an execution time of the plan, in
undocumented units, if the plan was created with the FFTW_MEASURE or other timing-based
options, or alternatively is a heuristic cost function for FFTW_ESTIMATE plans. (The cost
values of measured and estimated plans are not comparable, being in different units. Also,
costs from different FFTW versions or the same version compiled differently may not be in
the same units. Plans created from wisdom have a cost of 0 since no timing measurement
is performed for them. Finally, certain problems for which only one top-level algorithm was
possible may have required no measurements of the cost of the whole plan, in which case
fftw_cost will also return 0.) The cost metric for a given plan is returned by:

double fftw_cost(const fftw_plan plan);

The following two routines are provided purely for academic purposes (that is, for enter-
tainment).

void fftw_flops(const fftw_plan plan,

double *add, double *mul, double *fma);

Given a plan, set add, mul, and fma to an exact count of the number of floating-point addi-
tions, multiplications, and fused multiply-add operations involved in the plan’s execution.
The total number of floating-point operations (flops) is add + mul + 2*fma, or add + mul +

fma if the hardware supports fused multiply-add instructions (although the number of FMA
operations is only approximate because of compiler voodoo). (The number of operations
should be an integer, but we use double to avoid overflowing int for large transforms; the
arguments are of type double even for single and long-double precision versions of FFTW.)

24 FFTW 3.3.4

void fftw_fprint_plan(const fftw_plan plan, FILE *output_file);

void fftw_print_plan(const fftw_plan plan);

char *fftw_sprint_plan(const fftw_plan plan);

This outputs a “nerd-readable” representation of the plan to the given file, to stdout, or
two a newly allocated NUL-terminated string (which the caller is responsible for deallocating
with free), respectively.

4.3 Basic Interface

Recall that the FFTWAPI is divided into three parts1: the basic interface computes a single
transform of contiguous data, the advanced interface computes transforms of multiple or
strided arrays, and the guru interface supports the most general data layouts, multiplicities,
and strides. This section describes the the basic interface, which we expect to satisfy the
needs of most users.

4.3.1 Complex DFTs

fftw_plan fftw_plan_dft_1d(int n0,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

fftw_plan fftw_plan_dft_2d(int n0, int n1,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

fftw_plan fftw_plan_dft(int rank, const int *n,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

Plan a complex input/output discrete Fourier transform (DFT) in zero or more dimensions,
returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. In the standard FFTW distribution,
the basic interface is guaranteed to return a non-NULL plan. A plan may be NULL, however,
if you are using a customized FFTW configuration supporting a restricted set of transforms.

Arguments

• rank is the rank of the transform (it should be the size of the array *n), and can be any
non-negative integer. (See Section 2.2 [Complex Multi-Dimensional DFTs], page 5, for
the definition of “rank”.) The ‘_1d’, ‘_2d’, and ‘_3d’ planners correspond to a rank

of 1, 2, and 3, respectively. The rank may be zero, which is equivalent to a rank-1
transform of size 1, i.e. a copy of one number from input to output.

1 Gallia est omnis divisa in partes tres (Julius Caesar).

Chapter 4: FFTW Reference 25

• n0, n1, n2, or n[0..rank-1] (as appropriate for each routine) specify the size of the
transform dimensions. They can be any positive integer.

− Multi-dimensional arrays are stored in row-major order with dimensions: n0 x
n1; or n0 x n1 x n2; or n[0] x n[1] x ... x n[rank-1]. See Section 3.2 [Multi-
dimensional Array Format], page 15.

− FFTW is best at handling sizes of the form 2a3b5c7d11e13f , where e+f is either 0
or 1, and the other exponents are arbitrary. Other sizes are computed by means of
a slow, general-purpose algorithm (which nevertheless retains O(n log n) perfor-
mance even for prime sizes). It is possible to customize FFTW for different array
sizes; see Chapter 10 [Installation and Customization], page 97. Transforms whose
sizes are powers of 2 are especially fast.

• in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.)

If in == out, the transform is in-place and the input array is overwritten. If in != out,
the two arrays must not overlap (but FFTW does not check for this condition).

• sign is the sign of the exponent in the formula that defines the Fourier transform. It
can be −1 (= FFTW_FORWARD) or +1 (= FFTW_BACKWARD).

• flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 25.

FFTW computes an unnormalized transform: computing a forward followed by a backward
transform (or vice versa) will result in the original data multiplied by the size of the trans-
form (the product of the dimensions). For more information, see Section 4.8 [What FFTW
Really Computes], page 42.

4.3.2 Planner Flags

All of the planner routines in FFTW accept an integer flags argument, which is a bitwise
OR (‘|’) of zero or more of the flag constants defined below. These flags control the rigor
(and time) of the planning process, and can also impose (or lift) restrictions on the type of
transform algorithm that is employed.

Important: the planner overwrites the input array during planning unless a saved plan (see
Section 4.7 [Wisdom], page 40) is available for that problem, so you should initialize your
input data after creating the plan. The only exceptions to this are the FFTW_ESTIMATE and
FFTW_WISDOM_ONLY flags, as mentioned below.

In all cases, if wisdom is available for the given problem that was created with equal-or-
greater planning rigor, then the more rigorous wisdom is used. For example, in FFTW_

ESTIMATE mode any available wisdom is used, whereas in FFTW_PATIENT mode only wisdom
created in patient or exhaustive mode can be used. See Section 3.3 [Words of Wisdom-
Saving Plans], page 18.

Planning-rigor flags

• FFTW_ESTIMATE specifies that, instead of actual measurements of different algorithms,
a simple heuristic is used to pick a (probably sub-optimal) plan quickly. With this flag,
the input/output arrays are not overwritten during planning.

26 FFTW 3.3.4

• FFTW_MEASURE tells FFTW to find an optimized plan by actually computing several
FFTs and measuring their execution time. Depending on your machine, this can take
some time (often a few seconds). FFTW_MEASURE is the default planning option.

• FFTW_PATIENT is like FFTW_MEASURE, but considers a wider range of algorithms and
often produces a “more optimal” plan (especially for large transforms), but at the
expense of several times longer planning time (especially for large transforms).

• FFTW_EXHAUSTIVE is like FFTW_PATIENT, but considers an even wider range of algo-
rithms, including many that we think are unlikely to be fast, to produce the most
optimal plan but with a substantially increased planning time.

• FFTW_WISDOM_ONLY is a special planning mode in which the plan is only created if
wisdom is available for the given problem, and otherwise a NULL plan is returned. This
can be combined with other flags, e.g. ‘FFTW_WISDOM_ONLY | FFTW_PATIENT’ creates a
plan only if wisdom is available that was created in FFTW_PATIENT or FFTW_EXHAUSTIVE
mode. The FFTW_WISDOM_ONLY flag is intended for users who need to detect whether
wisdom is available; for example, if wisdom is not available one may wish to allocate
new arrays for planning so that user data is not overwritten.

Algorithm-restriction flags

• FFTW_DESTROY_INPUT specifies that an out-of-place transform is allowed to overwrite
its input array with arbitrary data; this can sometimes allow more efficient algorithms
to be employed.

• FFTW_PRESERVE_INPUT specifies that an out-of-place transform must not change its
input array. This is ordinarily the default, except for c2r and hc2r (i.e. complex-to-real)
transforms for which FFTW_DESTROY_INPUT is the default. In the latter cases, passing
FFTW_PRESERVE_INPUT will attempt to use algorithms that do not destroy the input,
at the expense of worse performance; for multi-dimensional c2r transforms, however,
no input-preserving algorithms are implemented and the planner will return NULL if
one is requested.

• FFTW_UNALIGNED specifies that the algorithm may not impose any unusual alignment
requirements on the input/output arrays (i.e. no SIMD may be used). This flag is
normally not necessary, since the planner automatically detects misaligned arrays. The
only use for this flag is if you want to use the new-array execute interface to execute a
given plan on a different array that may not be aligned like the original. (Using fftw_

malloc makes this flag unnecessary even then. You can also use fftw_alignment_of

to detect whether two arrays are equivalently aligned.)

Limiting planning time

extern void fftw_set_timelimit(double seconds);

This function instructs FFTW to spend at most seconds seconds (approximately) in the
planner. If seconds == FFTW_NO_TIMELIMIT (the default value, which is negative), then
planning time is unbounded. Otherwise, FFTW plans with a progressively wider range
of algorithms until the the given time limit is reached or the given range of algorithms is
explored, returning the best available plan.

Chapter 4: FFTW Reference 27

For example, specifying FFTW_PATIENT first plans in FFTW_ESTIMATE mode, then in FFTW_

MEASURE mode, then finally (time permitting) in FFTW_PATIENT. If FFTW_EXHAUSTIVE is
specified instead, the planner will further progress to FFTW_EXHAUSTIVE mode.

Note that the seconds argument specifies only a rough limit; in practice, the planner may
use somewhat more time if the time limit is reached when the planner is in the middle of an
operation that cannot be interrupted. At the very least, the planner will complete planning
in FFTW_ESTIMATE mode (which is thus equivalent to a time limit of 0).

4.3.3 Real-data DFTs

fftw_plan fftw_plan_dft_r2c_1d(int n0,

double *in, fftw_complex *out,

unsigned flags);

fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,

double *in, fftw_complex *out,

unsigned flags);

fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,

double *in, fftw_complex *out,

unsigned flags);

fftw_plan fftw_plan_dft_r2c(int rank, const int *n,

double *in, fftw_complex *out,

unsigned flags);

Plan a real-input/complex-output discrete Fourier transform (DFT) in zero or more dimen-
sions, returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting
a restricted set of transforms, or if you use the FFTW_PRESERVE_INPUT flag with a multi-
dimensional out-of-place c2r transform (see below).

Arguments

• rank is the rank of the transform (it should be the size of the array *n), and can be any
non-negative integer. (See Section 2.2 [Complex Multi-Dimensional DFTs], page 5, for
the definition of “rank”.) The ‘_1d’, ‘_2d’, and ‘_3d’ planners correspond to a rank

of 1, 2, and 3, respectively. The rank may be zero, which is equivalent to a rank-1
transform of size 1, i.e. a copy of one real number (with zero imaginary part) from
input to output.

• n0, n1, n2, or n[0..rank-1], (as appropriate for each routine) specify the size of the
transform dimensions. They can be any positive integer. This is different in general
from the physical array dimensions, which are described in Section 4.3.4 [Real-data
DFT Array Format], page 28.

− FFTW is best at handling sizes of the form 2a3b5c7d11e13f , where e+ f is either
0 or 1, and the other exponents are arbitrary. Other sizes are computed by means

28 FFTW 3.3.4

of a slow, general-purpose algorithm (which nevertheless retains O(n log n) per-
formance even for prime sizes). (It is possible to customize FFTW for different
array sizes; see Chapter 10 [Installation and Customization], page 97.) Transforms
whose sizes are powers of 2 are especially fast, and it is generally beneficial for the
last dimension of an r2c/c2r transform to be even.

• in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.) For an in-place transform, it is important to remember that
the real array will require padding, described in Section 4.3.4 [Real-data DFT Array
Format], page 28.

• flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 25.

The inverse transforms, taking complex input (storing the non-redundant half of a logically
Hermitian array) to real output, are given by:

fftw_plan fftw_plan_dft_c2r_1d(int n0,

fftw_complex *in, double *out,

unsigned flags);

fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,

fftw_complex *in, double *out,

unsigned flags);

fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,

fftw_complex *in, double *out,

unsigned flags);

fftw_plan fftw_plan_dft_c2r(int rank, const int *n,

fftw_complex *in, double *out,

unsigned flags);

The arguments are the same as for the r2c transforms, except that the input and output
data formats are reversed.

FFTW computes an unnormalized transform: computing an r2c followed by a c2r transform
(or vice versa) will result in the original data multiplied by the size of the transform (the
product of the logical dimensions). An r2c transform produces the same output as a FFTW_

FORWARD complex DFT of the same input, and a c2r transform is correspondingly equivalent
to FFTW_BACKWARD. For more information, see Section 4.8 [What FFTW Really Computes],
page 42.

4.3.4 Real-data DFT Array Format

The output of a DFT of real data (r2c) contains symmetries that, in principle, make half of
the outputs redundant (see Section 4.8 [What FFTW Really Computes], page 42). (Sim-
ilarly for the input of an inverse c2r transform.) In practice, it is not possible to entirely
realize these savings in an efficient and understandable format that generalizes to multi-
dimensional transforms. Instead, the output of the r2c transforms is slightly over half of
the output of the corresponding complex transform. We do not “pack” the data in any
way, but store it as an ordinary array of fftw_complex values. In fact, this data is simply
a subsection of what would be the array in the corresponding complex transform.

Chapter 4: FFTW Reference 29

Specifically, for a real transform of d (= rank) dimensions n0 × n1 × n2 × · · · × nd−1 , the
complex data is an n0 × n1 × n2 × · · · × (nd−1/2 + 1) array of fftw_complex values in
row-major order (with the division rounded down). That is, we only store the lower half
(non-negative frequencies), plus one element, of the last dimension of the data from the
ordinary complex transform. (We could have instead taken half of any other dimension,
but implementation turns out to be simpler if the last, contiguous, dimension is used.)

For an out-of-place transform, the real data is simply an array with physical dimensions
n0 × n1 × n2 × · · · × nd−1 in row-major order.

For an in-place transform, some complications arise since the complex data is slightly larger
than the real data. In this case, the final dimension of the real data must be padded with
extra values to accommodate the size of the complex data—two extra if the last dimension
is even and one if it is odd. That is, the last dimension of the real data must physically
contain 2(nd−1/2 + 1) double values (exactly enough to hold the complex data). This
physical array size does not, however, change the logical array size—only nd−1 values are
actually stored in the last dimension, and nd−1 is the last dimension passed to the planner.

4.3.5 Real-to-Real Transforms

fftw_plan fftw_plan_r2r_1d(int n, double *in, double *out,

fftw_r2r_kind kind, unsigned flags);

fftw_plan fftw_plan_r2r_2d(int n0, int n1, double *in, double *out,

fftw_r2r_kind kind0, fftw_r2r_kind kind1,

unsigned flags);

fftw_plan fftw_plan_r2r_3d(int n0, int n1, int n2,

double *in, double *out,

fftw_r2r_kind kind0,

fftw_r2r_kind kind1,

fftw_r2r_kind kind2,

unsigned flags);

fftw_plan fftw_plan_r2r(int rank, const int *n, double *in, double *out,

const fftw_r2r_kind *kind, unsigned flags);

Plan a real input/output (r2r) transform of various kinds in zero or more dimensions,
returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting a
restricted set of transforms, or for size-1 FFTW_REDFT00 kinds (which are not defined).

Arguments

• rank is the dimensionality of the transform (it should be the size of the arrays *n and
*kind), and can be any non-negative integer. The ‘_1d’, ‘_2d’, and ‘_3d’ planners
correspond to a rank of 1, 2, and 3, respectively. A rank of zero is equivalent to a copy
of one number from input to output.

30 FFTW 3.3.4

• n, or n0/n1/n2, or n[rank], respectively, gives the (physical) size of the transform
dimensions. They can be any positive integer.

− Multi-dimensional arrays are stored in row-major order with dimensions: n0 x
n1; or n0 x n1 x n2; or n[0] x n[1] x ... x n[rank-1]. See Section 3.2 [Multi-
dimensional Array Format], page 15.

− FFTW is generally best at handling sizes of the form 2a3b5c7d11e13f , where e+f is
either 0 or 1, and the other exponents are arbitrary. Other sizes are computed by
means of a slow, general-purpose algorithm (which nevertheless retains O(n log n)
performance even for prime sizes). (It is possible to customize FFTW for different
array sizes; see Chapter 10 [Installation and Customization], page 97.) Transforms
whose sizes are powers of 2 are especially fast.

− For a REDFT00 or RODFT00 transform kind in a dimension of size n, it is n − 1 or
n+ 1, respectively, that should be factorizable in the above form.

• in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.)

• kind, or kind0/kind1/kind2, or kind[rank], is the kind of r2r transform used for
the corresponding dimension. The valid kind constants are described in Section 4.3.6
[Real-to-Real Transform Kinds], page 30. In a multi-dimensional transform, what is
computed is the separable product formed by taking each transform kind along the
corresponding dimension, one dimension after another.

• flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 25.

4.3.6 Real-to-Real Transform Kinds

FFTW currently supports 11 different r2r transform kinds, specified by one of the constants
below. For the precise definitions of these transforms, see Section 4.8 [What FFTW Really
Computes], page 42. For a more colloquial introduction to these transform kinds, see
Section 2.5 [More DFTs of Real Data], page 10.

For dimension of size n, there is a corresponding “logical” dimension N that determines the
normalization (and the optimal factorization); the formula for N is given for each kind below.
Also, with each transform kind is listed its corrsponding inverse transform. FFTW computes
unnormalized transforms: a transform followed by its inverse will result in the original data
multiplied by N (or the product of the N’s for each dimension, in multi-dimensions).

• FFTW_R2HC computes a real-input DFT with output in “halfcomplex” format, i.e. real
and imaginary parts for a transform of size n stored as:

r0, r1, r2, . . . , rn/2, i(n+1)/2−1, . . . , i2, i1

(Logical N=n, inverse is FFTW_HC2R.)

• FFTW_HC2R computes the reverse of FFTW_R2HC, above. (Logical N=n, inverse is FFTW_
R2HC.)

• FFTW_DHT computes a discrete Hartley transform. (Logical N=n, inverse is FFTW_DHT.)

Chapter 4: FFTW Reference 31

• FFTW_REDFT00 computes an REDFT00 transform, i.e. a DCT-I. (Logical N=2*(n-1),
inverse is FFTW_REDFT00.)

• FFTW_REDFT10 computes an REDFT10 transform, i.e. a DCT-II (sometimes called
“the” DCT). (Logical N=2*n, inverse is FFTW_REDFT01.)

• FFTW_REDFT01 computes an REDFT01 transform, i.e. a DCT-III (sometimes called
“the” IDCT, being the inverse of DCT-II). (Logical N=2*n, inverse is FFTW_REDFT=10.)

• FFTW_REDFT11 computes an REDFT11 transform, i.e. a DCT-IV. (Logical N=2*n,
inverse is FFTW_REDFT11.)

• FFTW_RODFT00 computes an RODFT00 transform, i.e. a DST-I. (Logical N=2*(n+1),
inverse is FFTW_RODFT00.)

• FFTW_RODFT10 computes an RODFT10 transform, i.e. a DST-II. (Logical N=2*n, in-
verse is FFTW_RODFT01.)

• FFTW_RODFT01 computes an RODFT01 transform, i.e. a DST-III. (Logical N=2*n, in-
verse is FFTW_RODFT=10.)

• FFTW_RODFT11 computes an RODFT11 transform, i.e. a DST-IV. (Logical N=2*n, in-
verse is FFTW_RODFT11.)

4.4 Advanced Interface

FFTW’s “advanced” interface supplements the basic interface with four new planner rou-
tines, providing a new level of flexibility: you can plan a transform of multiple arrays si-
multaneously, operate on non-contiguous (strided) data, and transform a subset of a larger
multi-dimensional array. Other than these additional features, the planner operates in the
same fashion as in the basic interface, and the resulting fftw_plan is used in the same way
(see Section 4.2 [Using Plans], page 22).

4.4.1 Advanced Complex DFTs

fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,

fftw_complex *in, const int *inembed,

int istride, int idist,

fftw_complex *out, const int *onembed,

int ostride, int odist,

int sign, unsigned flags);

This routine plans multiple multidimensional complex DFTs, and it extends the fftw_plan_
dft routine (see Section 4.3.1 [Complex DFTs], page 24) to compute howmany transforms,
each having rank rank and size n. In addition, the transform data need not be contiguous,
but it may be laid out in memory with an arbitrary stride. To account for these possibilities,
fftw_plan_many_dft adds the new parameters howmany, {i,o}nembed, {i,o}stride, and
{i,o}dist. The FFTW basic interface (see Section 4.3.1 [Complex DFTs], page 24) provides
routines specialized for ranks 1, 2, and 3, but the advanced interface handles only the
general-rank case.

howmany is the number of transforms to compute. The resulting plan computes howmany

transforms, where the input of the k-th transform is at location in+k*idist (in C pointer
arithmetic), and its output is at location out+k*odist. Plans obtained in this way can

32 FFTW 3.3.4

often be faster than calling FFTW multiple times for the individual transforms. The basic
fftw_plan_dft interface corresponds to howmany=1 (in which case the dist parameters are
ignored).

Each of the howmany transforms has rank rank and size n, as in the basic interface. In
addition, the advanced interface allows the input and output arrays of each transform to
be row-major subarrays of larger rank-rank arrays, described by inembed and onembed

parameters, respectively. {i,o}nembed must be arrays of length rank, and n should be
elementwise less than or equal to {i,o}nembed. Passing NULL for an nembed parameter is
equivalent to passing n (i.e. same physical and logical dimensions, as in the basic interface.)

The stride parameters indicate that the j-th element of the input or output arrays is
located at j*istride or j*ostride, respectively. (For a multi-dimensional array, j is the
ordinary row-major index.) When combined with the k-th transform in a howmany loop,
from above, this means that the (j,k)-th element is at j*stride+k*dist. (The basic fftw_
plan_dft interface corresponds to a stride of 1.)

For in-place transforms, the input and output stride and dist parameters should be the
same; otherwise, the planner may return NULL.

Arrays n, inembed, and onembed are not used after this function returns. You can safely
free or reuse them.

Examples: One transform of one 5 by 6 array contiguous in memory:

int rank = 2;

int n[] = {5, 6};

int howmany = 1;

int idist = odist = 0; /* unused because howmany = 1 */

int istride = ostride = 1; /* array is contiguous in memory */

int *inembed = n, *onembed = n;

Transform of three 5 by 6 arrays, each contiguous in memory, stored in memory one after
another:

int rank = 2;

int n[] = {5, 6};

int howmany = 3;

int idist = odist = n[0]*n[1]; /* = 30, the distance in memory

between the first element

of the first array and the

first element of the second array */

int istride = ostride = 1; /* array is contiguous in memory */

int *inembed = n, *onembed = n;

Transform each column of a 2d array with 10 rows and 3 columns:

int rank = 1; /* not 2: we are computing 1d transforms */

int n[] = {10}; /* 1d transforms of length 10 */

int howmany = 3;

int idist = odist = 1;

int istride = ostride = 3; /* distance between two elements in

Chapter 4: FFTW Reference 33

the same column */

int *inembed = n, *onembed = n;

4.4.2 Advanced Real-data DFTs

fftw_plan fftw_plan_many_dft_r2c(int rank, const int *n, int howmany,

double *in, const int *inembed,

int istride, int idist,

fftw_complex *out, const int *onembed,

int ostride, int odist,

unsigned flags);

fftw_plan fftw_plan_many_dft_c2r(int rank, const int *n, int howmany,

fftw_complex *in, const int *inembed,

int istride, int idist,

double *out, const int *onembed,

int ostride, int odist,

unsigned flags);

Like fftw_plan_many_dft, these two functions add howmany, nembed, stride, and dist

parameters to the fftw_plan_dft_r2c and fftw_plan_dft_c2r functions, but otherwise
behave the same as the basic interface.

The interpretation of howmany, stride, and dist are the same as for fftw_plan_many_dft,
above. Note that the stride and dist for the real array are in units of double, and for
the complex array are in units of fftw_complex.

If an nembed parameter is NULL, it is interpreted as what it would be in the basic interface, as
described in Section 4.3.4 [Real-data DFT Array Format], page 28. That is, for the complex
array the size is assumed to be the same as n, but with the last dimension cut roughly in
half. For the real array, the size is assumed to be n if the transform is out-of-place, or n
with the last dimension “padded” if the transform is in-place.

If an nembed parameter is non-NULL, it is interpreted as the physical size of the corresponding
array, in row-major order, just as for fftw_plan_many_dft. In this case, each dimension of
nembed should be >= what it would be in the basic interface (e.g. the halved or padded n).

Arrays n, inembed, and onembed are not used after this function returns. You can safely
free or reuse them.

4.4.3 Advanced Real-to-real Transforms

fftw_plan fftw_plan_many_r2r(int rank, const int *n, int howmany,

double *in, const int *inembed,

int istride, int idist,

double *out, const int *onembed,

int ostride, int odist,

const fftw_r2r_kind *kind, unsigned flags);

Like fftw_plan_many_dft, this functions adds howmany, nembed, stride, and dist param-
eters to the fftw_plan_r2r function, but otherwise behave the same as the basic interface.
The interpretation of those additional parameters are the same as for fftw_plan_many_dft.
(Of course, the stride and dist parameters are now in units of double, not fftw_complex.)

34 FFTW 3.3.4

Arrays n, inembed, onembed, and kind are not used after this function returns. You can
safely free or reuse them.

4.5 Guru Interface

The “guru” interface to FFTW is intended to expose as much as possible of the flexibility in
the underlying FFTW architecture. It allows one to compute multi-dimensional “vectors”
(loops) of multi-dimensional transforms, where each vector/transform dimension has an
independent size and stride. One can also use more general complex-number formats, e.g.
separate real and imaginary arrays.

For those users who require the flexibility of the guru interface, it is important that they
pay special attention to the documentation lest they shoot themselves in the foot.

4.5.1 Interleaved and split arrays

The guru interface supports two representations of complex numbers, which we call the
interleaved and the split format.

The interleaved format is the same one used by the basic and advanced interfaces, and it
is documented in Section 4.1.1 [Complex numbers], page 21. In the interleaved format, you
provide pointers to the real part of a complex number, and the imaginary part understood
to be stored in the next memory location.

The split format allows separate pointers to the real and imaginary parts of a complex
array.

Technically, the interleaved format is redundant, because you can always express an inter-
leaved array in terms of a split array with appropriate pointers and strides. On the other
hand, the interleaved format is simpler to use, and it is common in practice. Hence, FFTW
supports it as a special case.

4.5.2 Guru vector and transform sizes

The guru interface introduces one basic new data structure, fftw_iodim, that is used to
specify sizes and strides for multi-dimensional transforms and vectors:

typedef struct {

int n;

int is;

int os;

} fftw_iodim;

Here, n is the size of the dimension, and is and os are the strides of that dimension for the
input and output arrays. (The stride is the separation of consecutive elements along this
dimension.)

The meaning of the stride parameter depends on the type of the array that the stride refers
to. If the array is interleaved complex, strides are expressed in units of complex numbers
(fftw_complex). If the array is split complex or real, strides are expressed in units of real
numbers (double). This convention is consistent with the usual pointer arithmetic in the
C language. An interleaved array is denoted by a pointer p to fftw_complex, so that p+1

Chapter 4: FFTW Reference 35

points to the next complex number. Split arrays are denoted by pointers to double, in
which case pointer arithmetic operates in units of sizeof(double).

The guru planner interfaces all take a (rank, dims[rank]) pair describing the transform
size, and a (howmany_rank, howmany_dims[howmany_rank]) pair describing the “vector”
size (a multi-dimensional loop of transforms to perform), where dims and howmany_dims

are arrays of fftw_iodim.

For example, the howmany parameter in the advanced complex-DFT interface corresponds
to howmany_rank = 1, howmany_dims[0].n = howmany, howmany_dims[0].is = idist,
and howmany_dims[0].os = odist. (To compute a single transform, you can just use
howmany_rank = 0.)

A row-major multidimensional array with dimensions n[rank] (see Section 3.2.1 [Row-
major Format], page 15) corresponds to dims[i].n = n[i] and the recurrence dims[i].is
= n[i+1] * dims[i+1].is (similarly for os). The stride of the last (i=rank-1) dimension is
the overall stride of the array. e.g. to be equivalent to the advanced complex-DFT interface,
you would have dims[rank-1].is = istride and dims[rank-1].os = ostride.

In general, we only guarantee FFTW to return a non-NULL plan if the vector and trans-
form dimensions correspond to a set of distinct indices, and for in-place transforms the
input/output strides should be the same.

4.5.3 Guru Complex DFTs

fftw_plan fftw_plan_guru_dft(

int rank, const fftw_iodim *dims,

int howmany_rank, const fftw_iodim *howmany_dims,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

fftw_plan fftw_plan_guru_split_dft(

int rank, const fftw_iodim *dims,

int howmany_rank, const fftw_iodim *howmany_dims,

double *ri, double *ii, double *ro, double *io,

unsigned flags);

These two functions plan a complex-data, multi-dimensional DFT for the interleaved
and split format, respectively. Transform dimensions are given by (rank, dims) over a
multi-dimensional vector (loop) of dimensions (howmany_rank, howmany_dims). dims and
howmany_dims should point to fftw_iodim arrays of length rank and howmany_rank,
respectively.

flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 25.

In the fftw_plan_guru_dft function, the pointers in and out point to the interleaved
input and output arrays, respectively. The sign can be either −1 (= FFTW_FORWARD) or +1
(= FFTW_BACKWARD). If the pointers are equal, the transform is in-place.

In the fftw_plan_guru_split_dft function, ri and ii point to the real and imaginary
input arrays, and ro and io point to the real and imaginary output arrays. The input

36 FFTW 3.3.4

and output pointers may be the same, indicating an in-place transform. For example, for
fftw_complex pointers in and out, the corresponding parameters are:

ri = (double *) in;

ii = (double *) in + 1;

ro = (double *) out;

io = (double *) out + 1;

Because fftw_plan_guru_split_dft accepts split arrays, strides are expressed in units of
double. For a contiguous fftw_complex array, the overall stride of the transform should be
2, the distance between consecutive real parts or between consecutive imaginary parts; see
Section 4.5.2 [Guru vector and transform sizes], page 34. Note that the dimension strides
are applied equally to the real and imaginary parts; real and imaginary arrays with different
strides are not supported.

There is no sign parameter in fftw_plan_guru_split_dft. This function always plans
for an FFTW_FORWARD transform. To plan for an FFTW_BACKWARD transform, you can exploit
the identity that the backwards DFT is equal to the forwards DFT with the real and
imaginary parts swapped. For example, in the case of the fftw_complex arrays above, the
FFTW_BACKWARD transform is computed by the parameters:

ri = (double *) in + 1;

ii = (double *) in;

ro = (double *) out + 1;

io = (double *) out;

4.5.4 Guru Real-data DFTs

fftw_plan fftw_plan_guru_dft_r2c(

int rank, const fftw_iodim *dims,

int howmany_rank, const fftw_iodim *howmany_dims,

double *in, fftw_complex *out,

unsigned flags);

fftw_plan fftw_plan_guru_split_dft_r2c(

int rank, const fftw_iodim *dims,

int howmany_rank, const fftw_iodim *howmany_dims,

double *in, double *ro, double *io,

unsigned flags);

fftw_plan fftw_plan_guru_dft_c2r(

int rank, const fftw_iodim *dims,

int howmany_rank, const fftw_iodim *howmany_dims,

fftw_complex *in, double *out,

unsigned flags);

fftw_plan fftw_plan_guru_split_dft_c2r(

int rank, const fftw_iodim *dims,

int howmany_rank, const fftw_iodim *howmany_dims,

double *ri, double *ii, double *out,

Chapter 4: FFTW Reference 37

unsigned flags);

Plan a real-input (r2c) or real-output (c2r), multi-dimensional DFT with transform dimen-
sions given by (rank, dims) over a multi-dimensional vector (loop) of dimensions (howmany_
rank, howmany_dims). dims and howmany_dims should point to fftw_iodim arrays of length
rank and howmany_rank, respectively. As for the basic and advanced interfaces, an r2c
transform is FFTW_FORWARD and a c2r transform is FFTW_BACKWARD.

The last dimension of dims is interpreted specially: that dimension of the real array has size
dims[rank-1].n, but that dimension of the complex array has size dims[rank-1].n/2+1

(division rounded down). The strides, on the other hand, are taken to be exactly as specified.
It is up to the user to specify the strides appropriately for the peculiar dimensions of the
data, and we do not guarantee that the planner will succeed (return non-NULL) for any
dimensions other than those described in Section 4.3.4 [Real-data DFT Array Format],
page 28 and generalized in Section 4.4.2 [Advanced Real-data DFTs], page 33. (That is, for
an in-place transform, each individual dimension should be able to operate in place.)

in and out point to the input and output arrays for r2c and c2r transforms, respectively.
For split arrays, ri and ii point to the real and imaginary input arrays for a c2r transform,
and ro and io point to the real and imaginary output arrays for an r2c transform. in and
ro or ri and out may be the same, indicating an in-place transform. (In-place transforms
where in and io or ii and out are the same are not currently supported.)

flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 25.

In-place transforms of rank greater than 1 are currently only supported for interleaved
arrays. For split arrays, the planner will return NULL.

4.5.5 Guru Real-to-real Transforms

fftw_plan fftw_plan_guru_r2r(int rank, const fftw_iodim *dims,

int howmany_rank,

const fftw_iodim *howmany_dims,

double *in, double *out,

const fftw_r2r_kind *kind,

unsigned flags);

Plan a real-to-real (r2r) multi-dimensional FFTW_FORWARD transform with transform dimen-
sions given by (rank, dims) over a multi-dimensional vector (loop) of dimensions (howmany_
rank, howmany_dims). dims and howmany_dims should point to fftw_iodim arrays of length
rank and howmany_rank, respectively.

The transform kind of each dimension is given by the kind parameter, which should point
to an array of length rank. Valid fftw_r2r_kind constants are given in Section 4.3.6
[Real-to-Real Transform Kinds], page 30.

in and out point to the real input and output arrays; they may be the same, indicating an
in-place transform.

flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 25.

38 FFTW 3.3.4

4.5.6 64-bit Guru Interface

When compiled in 64-bit mode on a 64-bit architecture (where addresses are 64 bits wide),
FFTW uses 64-bit quantities internally for all transform sizes, strides, and so on—you don’t
have to do anything special to exploit this. However, in the ordinary FFTW interfaces, you
specify the transform size by an int quantity, which is normally only 32 bits wide. This
means that, even though FFTW is using 64-bit sizes internally, you cannot specify a single
transform dimension larger than 231− 1 numbers.

We expect that few users will require transforms larger than this, but, for those who do,
we provide a 64-bit version of the guru interface in which all sizes are specified as integers
of type ptrdiff_t instead of int. (ptrdiff_t is a signed integer type defined by the C
standard to be wide enough to represent address differences, and thus must be at least
64 bits wide on a 64-bit machine.) We stress that there is no performance advantage to
using this interface—the same internal FFTW code is employed regardless—and it is only
necessary if you want to specify very large transform sizes.

In particular, the 64-bit guru interface is a set of planner routines that are exactly the
same as the guru planner routines, except that they are named with ‘guru64’ instead of
‘guru’ and they take arguments of type fftw_iodim64 instead of fftw_iodim. For example,
instead of fftw_plan_guru_dft, we have fftw_plan_guru64_dft.

fftw_plan fftw_plan_guru64_dft(

int rank, const fftw_iodim64 *dims,

int howmany_rank, const fftw_iodim64 *howmany_dims,

fftw_complex *in, fftw_complex *out,

int sign, unsigned flags);

The fftw_iodim64 type is similar to fftw_iodim, with the same interpretation, except that
it uses type ptrdiff_t instead of type int.

typedef struct {

ptrdiff_t n;

ptrdiff_t is;

ptrdiff_t os;

} fftw_iodim64;

Every other ‘fftw_plan_guru’ function also has a ‘fftw_plan_guru64’ equivalent, but we
do not repeat their documentation here since they are identical to the 32-bit versions except
as noted above.

4.6 New-array Execute Functions

Normally, one executes a plan for the arrays with which the plan was created, by calling
fftw_execute(plan) as described in Section 4.2 [Using Plans], page 22. However, it is
possible for sophisticated users to apply a given plan to a different array using the “new-
array execute” functions detailed below, provided that the following conditions are met:

• The array size, strides, etcetera are the same (since those are set by the plan).

• The input and output arrays are the same (in-place) or different (out-of-place) if the
plan was originally created to be in-place or out-of-place, respectively.

Chapter 4: FFTW Reference 39

• For split arrays, the separations between the real and imaginary parts, ii-ri and io-

ro, are the same as they were for the input and output arrays when the plan was
created. (This condition is automatically satisfied for interleaved arrays.)

• The alignment of the new input/output arrays is the same as that of the input/output
arrays when the plan was created, unless the plan was created with the FFTW_UNALIGNED
flag. Here, the alignment is a platform-dependent quantity (for example, it is the ad-
dress modulo 16 if SSE SIMD instructions are used, but the address modulo 4 for
non-SIMD single-precision FFTW on the same machine). In general, only arrays allo-
cated with fftw_malloc are guaranteed to be equally aligned (see Section 3.1 [SIMD
alignment and fftw malloc], page 15).

The alignment issue is especially critical, because if you don’t use fftw_malloc then you
may have little control over the alignment of arrays in memory. For example, neither the
C++ new function nor the Fortran allocate statement provide strong enough guarantees
about data alignment. If you don’t use fftw_malloc, therefore, you probably have to use
FFTW_UNALIGNED (which disables most SIMD support). If possible, it is probably better for
you to simply create multiple plans (creating a new plan is quick once one exists for a given
size), or better yet re-use the same array for your transforms.

For rare circumstances in which you cannot control the alignment of allocated memory, but
wish to determine where a given array is aligned like the original array for which a plan was
created, you can use the fftw_alignment_of function:

int fftw_alignment_of(double *p);

Two arrays have equivalent alignment (for the purposes of applying a plan) if and only if
fftw_alignment_of returns the same value for the corresponding pointers to their data
(typecast to double* if necessary).

If you are tempted to use the new-array execute interface because you want to transform a
known bunch of arrays of the same size, you should probably go use the advanced interface
instead (see Section 4.4 [Advanced Interface], page 31)).

The new-array execute functions are:

void fftw_execute_dft(

const fftw_plan p,

fftw_complex *in, fftw_complex *out);

void fftw_execute_split_dft(

const fftw_plan p,

double *ri, double *ii, double *ro, double *io);

void fftw_execute_dft_r2c(

const fftw_plan p,

double *in, fftw_complex *out);

void fftw_execute_split_dft_r2c(

const fftw_plan p,

double *in, double *ro, double *io);

40 FFTW 3.3.4

void fftw_execute_dft_c2r(

const fftw_plan p,

fftw_complex *in, double *out);

void fftw_execute_split_dft_c2r(

const fftw_plan p,

double *ri, double *ii, double *out);

void fftw_execute_r2r(

const fftw_plan p,

double *in, double *out);

These execute the plan to compute the corresponding transform on the input/output arrays
specified by the subsequent arguments. The input/output array arguments have the same
meanings as the ones passed to the guru planner routines in the preceding sections. The plan
is not modified, and these routines can be called as many times as desired, or intermixed
with calls to the ordinary fftw_execute.

The plan must have been created for the transform type corresponding to the execute
function, e.g. it must be a complex-DFT plan for fftw_execute_dft. Any of the planner
routines for that transform type, from the basic to the guru interface, could have been used
to create the plan, however.

4.7 Wisdom

This section documents the FFTW mechanism for saving and restoring plans from disk.
This mechanism is called wisdom.

4.7.1 Wisdom Export

int fftw_export_wisdom_to_filename(const char *filename);

void fftw_export_wisdom_to_file(FILE *output_file);

char *fftw_export_wisdom_to_string(void);

void fftw_export_wisdom(void (*write_char)(char c, void *), void *data);

These functions allow you to export all currently accumulated wisdom in a form from
which it can be later imported and restored, even during a separate run of the program.
(See Section 3.3 [Words of Wisdom-Saving Plans], page 18.) The current store of wisdom
is not affected by calling any of these routines.

fftw_export_wisdom exports the wisdom to any output medium, as specified by the call-
back function write_char. write_char is a putc-like function that writes the character c
to some output; its second parameter is the data pointer passed to fftw_export_wisdom.
For convenience, the following three “wrapper” routines are provided:

fftw_export_wisdom_to_filename writes wisdom to a file named filename (which is cre-
ated or overwritten), returning 1 on success and 0 on failure. A lower-level function, which
requires you to open and close the file yourself (e.g. if you want to write wisdom to a portion
of a larger file) is fftw_export_wisdom_to_file. This writes the wisdom to the current

Chapter 4: FFTW Reference 41

position in output_file, which should be open with write permission; upon exit, the file
remains open and is positioned at the end of the wisdom data.

fftw_export_wisdom_to_string returns a pointer to a NULL-terminated string holding the
wisdom data. This string is dynamically allocated, and it is the responsibility of the caller
to deallocate it with free when it is no longer needed.

All of these routines export the wisdom in the same format, which we will not document
here except to say that it is LISP-like ASCII text that is insensitive to white space.

4.7.2 Wisdom Import

int fftw_import_system_wisdom(void);

int fftw_import_wisdom_from_filename(const char *filename);

int fftw_import_wisdom_from_string(const char *input_string);

int fftw_import_wisdom(int (*read_char)(void *), void *data);

These functions import wisdom into a program from data stored by the fftw_export_

wisdom functions above. (See Section 3.3 [Words of Wisdom-Saving Plans], page 18.) The
imported wisdom replaces any wisdom already accumulated by the running program.

fftw_import_wisdom imports wisdom from any input medium, as specified by the callback
function read_char. read_char is a getc-like function that returns the next character in
the input; its parameter is the data pointer passed to fftw_import_wisdom. If the end of
the input data is reached (which should never happen for valid data), read_char should
return EOF (as defined in <stdio.h>). For convenience, the following three “wrapper”
routines are provided:

fftw_import_wisdom_from_filename reads wisdom from a file named filename. A lower-
level function, which requires you to open and close the file yourself (e.g. if you want to read
wisdom from a portion of a larger file) is fftw_import_wisdom_from_file. This reads wis-
dom from the current position in input_file (which should be open with read permission);
upon exit, the file remains open, but the position of the read pointer is unspecified.

fftw_import_wisdom_from_string reads wisdom from the NULL-terminated string input_

string.

fftw_import_system_wisdom reads wisdom from an implementation-defined standard file
(/etc/fftw/wisdom on Unix and GNU systems).

The return value of these import routines is 1 if the wisdom was read successfully and 0

otherwise. Note that, in all of these functions, any data in the input stream past the end
of the wisdom data is simply ignored.

4.7.3 Forgetting Wisdom

void fftw_forget_wisdom(void);

Calling fftw_forget_wisdom causes all accumulated wisdom to be discarded and its asso-
ciated memory to be freed. (New wisdom can still be gathered subsequently, however.)

4.7.4 Wisdom Utilities

FFTW includes two standalone utility programs that deal with wisdom. We merely sum-
marize them here, since they come with their own man pages for Unix and GNU systems
(with HTML versions on our web site).

42 FFTW 3.3.4

The first program is fftw-wisdom (or fftwf-wisdom in single precision, etcetera), which
can be used to create a wisdom file containing plans for any of the transform sizes and types
supported by FFTW. It is preferable to create wisdom directly from your executable (see
Section 3.4 [Caveats in Using Wisdom], page 18), but this program is useful for creating
global wisdom files for fftw_import_system_wisdom.

The second program is fftw-wisdom-to-conf, which takes a wisdom file as input and
produces a configuration routine as output. The latter is a C subroutine that you can
compile and link into your program, replacing a routine of the same name in the FFTW
library, that determines which parts of FFTW are callable by your program. fftw-wisdom-
to-conf produces a configuration routine that links to only those parts of FFTW needed
by the saved plans in the wisdom, greatly reducing the size of statically linked executables
(which should only attempt to create plans corresponding to those in the wisdom, however).

4.8 What FFTW Really Computes

In this section, we provide precise mathematical definitions for the transforms that FFTW
computes. These transform definitions are fairly standard, but some authors follow slightly
different conventions for the normalization of the transform (the constant factor in front)
and the sign of the complex exponent. We begin by presenting the one-dimensional (1d)
transform definitions, and then give the straightforward extension to multi-dimensional
transforms.

4.8.1 The 1d Discrete Fourier Transform (DFT)

The forward (FFTW_FORWARD) discrete Fourier transform (DFT) of a 1d complex array X of
size n computes an array Y , where:

Yk =
n−1∑
j=0

Xje
−2πjk

√
−1/n .

The backward (FFTW_BACKWARD) DFT computes:

Yk =
n−1∑
j=0

Xje
2πjk

√
−1/n .

FFTW computes an unnormalized transform, in that there is no coefficient in front of
the summation in the DFT. In other words, applying the forward and then the backward
transform will multiply the input by n.

From above, an FFTW_FORWARD transform corresponds to a sign of −1 in the exponent of
the DFT. Note also that we use the standard “in-order” output ordering—the k-th output
corresponds to the frequency k/n (or k/T , where T is your total sampling period). For
those who like to think in terms of positive and negative frequencies, this means that the
positive frequencies are stored in the first half of the output and the negative frequencies
are stored in backwards order in the second half of the output. (The frequency −k/n is the
same as the frequency (n− k)/n.)

Chapter 4: FFTW Reference 43

4.8.2 The 1d Real-data DFT

The real-input (r2c) DFT in FFTW computes the forward transform Y of the size n real
array X, exactly as defined above, i.e.

Yk =
n−1∑
j=0

Xje
−2πjk

√
−1/n .

This output array Y can easily be shown to possess the “Hermitian” symmetry Yk = Y ∗n−k,
where we take Y to be periodic so that Yn = Y0.

As a result of this symmetry, half of the output Y is redundant (being the complex conjugate
of the other half), and so the 1d r2c transforms only output elements 0. . .n/2 of Y (n/2+1
complex numbers), where the division by 2 is rounded down.

Moreover, the Hermitian symmetry implies that Y0 and, if n is even, the Yn/2 element, are
purely real. So, for the R2HC r2r transform, these elements are not stored in the halfcomplex
output format.

The c2r and H2RC r2r transforms compute the backward DFT of the complex array X
with Hermitian symmetry, stored in the r2c/R2HC output formats, respectively, where the
backward transform is defined exactly as for the complex case:

Yk =
n−1∑
j=0

Xje
2πjk

√
−1/n .

The outputs Y of this transform can easily be seen to be purely real, and are stored as an
array of real numbers.

Like FFTW’s complex DFT, these transforms are unnormalized. In other words, apply-
ing the real-to-complex (forward) and then the complex-to-real (backward) transform will
multiply the input by n.

4.8.3 1d Real-even DFTs (DCTs)

The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized for-
ward (and backward) DFTs as defined above, where the input array X of length N is
purely real and is also even symmetry. In this case, the output array is likewise real and
even symmetry.

For the case of REDFT00, this even symmetry means that Xj = XN−j, where we take X to
be periodic so that XN = X0. Because of this redundancy, only the first n real numbers
are actually stored, where N = 2(n− 1).

The proper definition of even symmetry for REDFT10, REDFT01, and REDFT11 transforms is
somewhat more intricate because of the shifts by 1/2 of the input and/or output, although
the corresponding boundary conditions are given in Section 2.5.2 [Real even/odd DFTs
(cosine/sine transforms)], page 11. Because of the even symmetry, however, the sine terms
in the DFT all cancel and the remaining cosine terms are written explicitly below. This
formulation often leads people to call such a transform a discrete cosine transform (DCT),
although it is really just a special case of the DFT.

In each of the definitions below, we transform a real array X of length n to a real array Y
of length n:

44 FFTW 3.3.4

REDFT00 (DCT-I)

An REDFT00 transform (type-I DCT) in FFTW is defined by:

Yk = X0 + (−1)kXn−1 + 2
n−2∑
j=1

Xj cos[πjk/(n− 1)].

Note that this transform is not defined for n = 1. For n = 2, the summation term above is
dropped as you might expect.

REDFT10 (DCT-II)

An REDFT10 transform (type-II DCT, sometimes called “the” DCT) in FFTW is defined
by:

Yk = 2
n−1∑
j=0

Xj cos[π(j + 1/2)k/n].

REDFT01 (DCT-III)

An REDFT01 transform (type-III DCT) in FFTW is defined by:

Yk = X0 + 2
n−1∑
j=1

Xj cos[πj(k + 1/2)/n].

In the case of n = 1, this reduces to Y0 = X0. Up to a scale factor (see below), this is the
inverse of REDFT10 (“the” DCT), and so the REDFT01 (DCT-III) is sometimes called the
“IDCT”.

REDFT11 (DCT-IV)

An REDFT11 transform (type-IV DCT) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj cos[π(j + 1/2)(k + 1/2)/n].

Inverses and Normalization

These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW
(hence the factors of 2 in front of the summations). The unnormalized inverse of REDFT00
is REDFT00, of REDFT10 is REDFT01 and vice versa, and of REDFT11 is REDFT11. Each
unnormalized inverse results in the original array multiplied by N , where N is the logical
DFT size. For REDFT00, N = 2(n− 1) (note that n = 1 is not defined); otherwise, N = 2n.

In defining the discrete cosine transform, some authors also include additional factors of
√
2

(or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic change
that makes the transform orthogonal, but sacrifices the direct equivalence to a symmetric
DFT.

Chapter 4: FFTW Reference 45

4.8.4 1d Real-odd DFTs (DSTs)

The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized forward
(and backward) DFTs as defined above, where the input array X of length N is purely real
and is also odd symmetry. In this case, the output is odd symmetry and purely imaginary.

For the case of RODFT00, this odd symmetry means that Xj = −XN−j, where we take X
to be periodic so that XN = X0. Because of this redundancy, only the first n real numbers
starting at j = 1 are actually stored (the j = 0 element is zero), where N = 2(n+ 1).

The proper definition of odd symmetry for RODFT10, RODFT01, and RODFT11 transforms is
somewhat more intricate because of the shifts by 1/2 of the input and/or output, although
the corresponding boundary conditions are given in Section 2.5.2 [Real even/odd DFTs
(cosine/sine transforms)], page 11. Because of the odd symmetry, however, the cosine
terms in the DFT all cancel and the remaining sine terms are written explicitly below. This
formulation often leads people to call such a transform a discrete sine transform (DST),
although it is really just a special case of the DFT.

In each of the definitions below, we transform a real array X of length n to a real array Y
of length n:

RODFT00 (DST-I)

An RODFT00 transform (type-I DST) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj sin[π(j + 1)(k + 1)/(n+ 1)].

RODFT10 (DST-II)

An RODFT10 transform (type-II DST) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj sin[π(j + 1/2)(k + 1)/n].

RODFT01 (DST-III)

An RODFT01 transform (type-III DST) in FFTW is defined by:

Yk = (−1)kXn−1 + 2
n−2∑
j=0

Xj sin[π(j + 1)(k + 1/2)/n].

In the case of n = 1, this reduces to Y0 = X0.

RODFT11 (DST-IV)

An RODFT11 transform (type-IV DST) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj sin[π(j + 1/2)(k + 1/2)/n].

46 FFTW 3.3.4

Inverses and Normalization

These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW
(hence the factors of 2 in front of the summations). The unnormalized inverse of RODFT00
is RODFT00, of RODFT10 is RODFT01 and vice versa, and of RODFT11 is RODFT11. Each
unnormalized inverse results in the original array multiplied by N , where N is the logical
DFT size. For RODFT00, N = 2(n+ 1); otherwise, N = 2n.

In defining the discrete sine transform, some authors also include additional factors of√
2 (or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic

change that makes the transform orthogonal, but sacrifices the direct equivalence to an
antisymmetric DFT.

4.8.5 1d Discrete Hartley Transforms (DHTs)

The discrete Hartley transform (DHT) of a 1d real array X of size n computes a real array
Y of the same size, where:

Yk =
n−1∑
j=0

Xj[cos(2πjk/n) + sin(2πjk/n)].

FFTW computes an unnormalized transform, in that there is no coefficient in front of the
summation in the DHT. In other words, applying the transform twice (the DHT is its own
inverse) will multiply the input by n.

4.8.6 Multi-dimensional Transforms

The multi-dimensional transforms of FFTW, in general, compute simply the separable
product of the given 1d transform along each dimension of the array. Since each of these
transforms is unnormalized, computing the forward followed by the backward/inverse multi-
dimensional transform will result in the original array scaled by the product of the normal-
ization factors for each dimension (e.g. the product of the dimension sizes, for a multi-
dimensional DFT).

As an explicit example, consider the following exact mathematical definition of our
multi-dimensional DFT. Let X be a d-dimensional complex array whose elements are
X[j1, j2, . . . , jd], where 0 ≤ js < ns for all s ∈ {1, 2, . . . , d}. Let also ωs = e2π

√
−1/ns , for all

s ∈ {1, 2, . . . , d}.

The forward transform computes a complex array Y , whose structure is the same as that
of X, defined by

Y [k1, k2, . . . , kd] =
n1−1∑
j1=0

n2−1∑
j2=0

· · ·
nd−1∑
jd=0

X[j1, j2, . . . , jd]ω
−j1k1
1 ω−j2k22 · · ·ω−jdkdd .

The backward transform computes

Y [k1, k2, . . . , kd] =
n1−1∑
j1=0

n2−1∑
j2=0

· · ·
nd−1∑
jd=0

X[j1, j2, . . . , jd]ω
j1k1
1 ωj2k22 · · ·ωjdkdd .

Chapter 4: FFTW Reference 47

Computing the forward transform followed by the backward transform will multiply the
array by

∏d
s=1 nd.

The definition of FFTW’s multi-dimensional DFT of real data (r2c) deserves special at-
tention. In this case, we logically compute the full multi-dimensional DFT of the input
data; since the input data are purely real, the output data have the Hermitian symme-
try and therefore only one non-redundant half need be stored. More specifically, for an
n0 × n1 × n2 × · · · × nd−1 multi-dimensional real-input DFT, the full (logical) complex
output array Y [k0, k1, . . . , kd−1] has the symmetry:

Y [k0, k1, . . . , kd−1] = Y [n0 − k0, n1 − k1, . . . , nd−1 − kd−1]∗

(where each dimension is periodic). Because of this symmetry, we only store the kd−1 =
0 · · ·nd−1/2 elements of the last dimension (division by 2 is rounded down). (We could
instead have cut any other dimension in half, but the last dimension proved computation-
ally convenient.) This results in the peculiar array format described in more detail by
Section 4.3.4 [Real-data DFT Array Format], page 28.

The multi-dimensional c2r transform is simply the unnormalized inverse of the r2c trans-
form. i.e. it is the same as FFTW’s complex backward multi-dimensional DFT, operating
on a Hermitian input array in the peculiar format mentioned above and outputting a real
array (since the DFT output is purely real).

We should remind the user that the separable product of 1d transforms along each dimen-
sion, as computed by FFTW, is not always the same thing as the usual multi-dimensional
transform. A multi-dimensional R2HC (or HC2R) transform is not identical to the multi-
dimensional DFT, requiring some post-processing to combine the requisite real and imag-
inary parts, as was described in Section 2.5.1 [The Halfcomplex-format DFT], page 11.
Likewise, FFTW’s multidimensional FFTW_DHT r2r transform is not the same thing as the
logical multi-dimensional discrete Hartley transform defined in the literature, as discussed
in Section 2.5.3 [The Discrete Hartley Transform], page 13.

Chapter 5: Multi-threaded FFTW 49

5 Multi-threaded FFTW

In this chapter we document the parallel FFTW routines for shared-memory parallel hard-
ware. These routines, which support parallel one- and multi-dimensional transforms of both
real and complex data, are the easiest way to take advantage of multiple processors with
FFTW. They work just like the corresponding uniprocessor transform routines, except that
you have an extra initialization routine to call, and there is a routine to set the number
of threads to employ. Any program that uses the uniprocessor FFTW can therefore be
trivially modified to use the multi-threaded FFTW.

A shared-memory machine is one in which all CPUs can directly access the same main mem-
ory, and such machines are now common due to the ubiquity of multi-core CPUs. FFTW’s
multi-threading support allows you to utilize these additional CPUs transparently from a
single program. However, this does not necessarily translate into performance gains—when
multiple threads/CPUs are employed, there is an overhead required for synchronization
that may outweigh the computatational parallelism. Therefore, you can only benefit from
threads if your problem is sufficiently large.

5.1 Installation and Supported Hardware/Software

All of the FFTW threads code is located in the threads subdirectory of the FFTW pack-
age. On Unix systems, the FFTW threads libraries and header files can be automatically
configured, compiled, and installed along with the uniprocessor FFTW libraries simply by
including --enable-threads in the flags to the configure script (see Section 10.1 [Instal-
lation on Unix], page 97), or --enable-openmp to use OpenMP threads.

The threads routines require your operating system to have some sort of shared-memory
threads support. Specifically, the FFTW threads package works with POSIX threads (avail-
able on most Unix variants, from GNU/Linux to MacOS X) and Win32 threads. OpenMP
threads, which are supported in many common compilers (e.g. gcc) are also supported, and
may give better performance on some systems. (OpenMP threads are also useful if you
are employing OpenMP in your own code, in order to minimize conflicts between threading
models.) If you have a shared-memory machine that uses a different threads API, it should
be a simple matter of programming to include support for it; see the file threads/threads.c
for more detail.

You can compile FFTW with both --enable-threads and --enable-openmp at the same
time, since they install libraries with different names (‘fftw3_threads’ and ‘fftw3_omp’,
as described below). However, your programs may only link to one of these two libraries
at a time.

Ideally, of course, you should also have multiple processors in order to get any benefit from
the threaded transforms.

5.2 Usage of Multi-threaded FFTW

Here, it is assumed that the reader is already familiar with the usage of the uniprocessor
FFTW routines, described elsewhere in this manual. We only describe what one has to
change in order to use the multi-threaded routines.

http://www.openmp.org

50 FFTW 3.3.4

First, programs using the parallel complex transforms should be linked with -lfftw3_

threads -lfftw3 -lm on Unix, or -lfftw3_omp -lfftw3 -lm if you compiled with
OpenMP. You will also need to link with whatever library is responsible for threads on
your system (e.g. -lpthread on GNU/Linux) or include whatever compiler flag enables
OpenMP (e.g. -fopenmp with gcc).

Second, before calling any FFTW routines, you should call the function:

int fftw_init_threads(void);

This function, which need only be called once, performs any one-time initialization required
to use threads on your system. It returns zero if there was some error (which should not
happen under normal circumstances) and a non-zero value otherwise.

Third, before creating a plan that you want to parallelize, you should call:

void fftw_plan_with_nthreads(int nthreads);

The nthreads argument indicates the number of threads you want FFTW to use (or actu-
ally, the maximum number). All plans subsequently created with any planner routine will
use that many threads. You can call fftw_plan_with_nthreads, create some plans, call
fftw_plan_with_nthreads again with a different argument, and create some more plans for
a new number of threads. Plans already created before a call to fftw_plan_with_nthreads
are unaffected. If you pass an nthreads argument of 1 (the default), threads are disabled
for subsequent plans.

With OpenMP, to configure FFTW to use all of the currently running OpenMP threads (set
by omp_set_num_threads(nthreads) or by the OMP_NUM_THREADS environment variable),
you can do: fftw_plan_with_nthreads(omp_get_max_threads()). (The ‘omp_’ OpenMP
functions are declared via #include <omp.h>.)

Given a plan, you then execute it as usual with fftw_execute(plan), and the execution
will use the number of threads specified when the plan was created. When done, you
destroy it as usual with fftw_destroy_plan. As described in Section 5.4 [Thread safety],
page 51, plan execution is thread-safe, but plan creation and destruction are not : you
should create/destroy plans only from a single thread, but can safely execute multiple plans
in parallel.

There is one additional routine: if you want to get rid of all memory and other resources
allocated internally by FFTW, you can call:

void fftw_cleanup_threads(void);

which is much like the fftw_cleanup() function except that it also gets rid of threads-
related data. You must not execute any previously created plans after calling this function.

We should also mention one other restriction: if you save wisdom from a program using the
multi-threaded FFTW, that wisdom cannot be used by a program using only the single-
threaded FFTW (i.e. not calling fftw_init_threads). See Section 3.3 [Words of Wisdom-
Saving Plans], page 18.

Chapter 5: Multi-threaded FFTW 51

5.3 How Many Threads to Use?

There is a fair amount of overhead involved in synchronizing threads, so the optimal number
of threads to use depends upon the size of the transform as well as on the number of
processors you have.

As a general rule, you don’t want to use more threads than you have processors. (Using
more threads will work, but there will be extra overhead with no benefit.) In fact, if the
problem size is too small, you may want to use fewer threads than you have processors.

You will have to experiment with your system to see what level of parallelization is best
for your problem size. Typically, the problem will have to involve at least a few thou-
sand data points before threads become beneficial. If you plan with FFTW_PATIENT, it will
automatically disable threads for sizes that don’t benefit from parallelization.

5.4 Thread safety

Users writing multi-threaded programs (including OpenMP) must concern themselves with
the thread safety of the libraries they use—that is, whether it is safe to call routines in
parallel from multiple threads. FFTW can be used in such an environment, but some care
must be taken because the planner routines share data (e.g. wisdom and trigonometric
tables) between calls and plans.

The upshot is that the only thread-safe (re-entrant) routine in FFTW is fftw_execute (and
the new-array variants thereof). All other routines (e.g. the planner) should only be called
from one thread at a time. So, for example, you can wrap a semaphore lock around any calls
to the planner; even more simply, you can just create all of your plans from one thread. We
do not think this should be an important restriction (FFTW is designed for the situation
where the only performance-sensitive code is the actual execution of the transform), and
the benefits of shared data between plans are great.

Note also that, since the plan is not modified by fftw_execute, it is safe to execute the
same plan in parallel by multiple threads. However, since a given plan operates by default
on a fixed array, you need to use one of the new-array execute functions (see Section 4.6
[New-array Execute Functions], page 38) so that different threads compute the transform
of different data.

(Users should note that these comments only apply to programs using shared-memory
threads or OpenMP. Parallelism using MPI or forked processes involves a separate address-
space and global variables for each process, and is not susceptible to problems of this sort.)

If you are configured FFTW with the --enable-debug or --enable-debug-malloc flags
(see Section 10.1 [Installation on Unix], page 97), then fftw_execute is not thread-safe.
These flags are not documented because they are intended only for developing and debugging
FFTW, but if you must use --enable-debug then you should also specifically pass --

disable-debug-malloc for fftw_execute to be thread-safe.

Chapter 6: Distributed-memory FFTW with MPI 53

6 Distributed-memory FFTW with MPI

In this chapter we document the parallel FFTW routines for parallel systems supporting the
MPI message-passing interface. Unlike the shared-memory threads described in the previous
chapter, MPI allows you to use distributed-memory parallelism, where each CPU has its
own separate memory, and which can scale up to clusters of many thousands of processors.
This capability comes at a price, however: each process only stores a portion of the data to
be transformed, which means that the data structures and programming-interface are quite
different from the serial or threads versions of FFTW.

Distributed-memory parallelism is especially useful when you are transforming arrays so
large that they do not fit into the memory of a single processor. The storage per-process
required by FFTW’s MPI routines is proportional to the total array size divided by the
number of processes. Conversely, distributed-memory parallelism can easily pose an un-
acceptably high communications overhead for small problems; the threshold problem size
for which parallelism becomes advantageous will depend on the precise problem you are
interested in, your hardware, and your MPI implementation.

A note on terminology: in MPI, you divide the data among a set of “processes” which
each run in their own memory address space. Generally, each process runs on a different
physical processor, but this is not required. A set of processes in MPI is described by an
opaque data structure called a “communicator,” the most common of which is the predefined
communicator MPI_COMM_WORLD which refers to all processes. For more information on these
and other concepts common to all MPI programs, we refer the reader to the documentation
at the MPI home page.

We assume in this chapter that the reader is familiar with the usage of the serial (unipro-
cessor) FFTW, and focus only on the concepts new to the MPI interface.

6.1 FFTW MPI Installation

All of the FFTW MPI code is located in the mpi subdirectory of the FFTW package.
On Unix systems, the FFTW MPI libraries and header files are automatically configured,
compiled, and installed along with the uniprocessor FFTW libraries simply by including
--enable-mpi in the flags to the configure script (see Section 10.1 [Installation on Unix],
page 97).

Any implementation of the MPI standard, version 1 or later, should work with FFTW.
The configure script will attempt to automatically detect how to compile and link code
using your MPI implementation. In some cases, especially if you have multiple different
MPI implementations installed or have an unusual MPI software package, you may need to
provide this information explicitly.

Most commonly, one compiles MPI code by invoking a special compiler command, typically
mpicc for C code. The configure script knows the most common names for this command,
but you can specify the MPI compilation command explicitly by setting the MPICC variable,
as in ‘./configure MPICC=mpicc ...’.

If, instead of a special compiler command, you need to link a certain library, you can
specify the link command via the MPILIBS variable, as in ‘./configure MPILIBS=-lmpi

http://www.mcs.anl.gov/research/projects/mpi/

54 FFTW 3.3.4

...’. Note that if your MPI library is installed in a non-standard location (one the compiler
does not know about by default), you may also have to specify the location of the library
and header files via LDFLAGS and CPPFLAGS variables, respectively, as in ‘./configure
LDFLAGS=-L/path/to/mpi/libs CPPFLAGS=-I/path/to/mpi/include ...’.

6.2 Linking and Initializing MPI FFTW

Programs using the MPI FFTW routines should be linked with -lfftw3_mpi -lfftw3 -lm

on Unix in double precision, -lfftw3f_mpi -lfftw3f -lm in single precision, and so on
(see Section 4.1.2 [Precision], page 21). You will also need to link with whatever library
is responsible for MPI on your system; in most MPI implementations, there is a special
compiler alias named mpicc to compile and link MPI code.

Before calling any FFTW routines except possibly fftw_init_threads (see Section 6.11
[Combining MPI and Threads], page 66), but after calling MPI_Init, you should call the
function:

void fftw_mpi_init(void);

If, at the end of your program, you want to get rid of all memory and other resources
allocated internally by FFTW, for both the serial and MPI routines, you can call:

void fftw_mpi_cleanup(void);

which is much like the fftw_cleanup() function except that it also gets rid of FFTW’s
MPI-related data. You must not execute any previously created plans after calling this
function.

6.3 2d MPI example

Before we document the FFTW MPI interface in detail, we begin with a simple example
outlining how one would perform a two-dimensional N0 by N1 complex DFT.

#include <fftw3-mpi.h>

int main(int argc, char **argv)

{

const ptrdiff_t N0 = ..., N1 = ...;

fftw_plan plan;

fftw_complex *data;

ptrdiff_t alloc_local, local_n0, local_0_start, i, j;

MPI_Init(&argc, &argv);

fftw_mpi_init();

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_2d(N0, N1, MPI_COMM_WORLD,

&local_n0, &local_0_start);

data = fftw_alloc_complex(alloc_local);

/* create plan for in-place forward DFT */

Chapter 6: Distributed-memory FFTW with MPI 55

plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD,

FFTW_FORWARD, FFTW_ESTIMATE);

/* initialize data to some function my_function(x,y) */

for (i = 0; i < local_n0; ++i) for (j = 0; j < N1; ++j)

data[i*N1 + j] = my_function(local_0_start + i, j);

/* compute transforms, in-place, as many times as desired */

fftw_execute(plan);

fftw_destroy_plan(plan);

MPI_Finalize();

}

As can be seen above, the MPI interface follows the same basic style of allo-
cate/plan/execute/destroy as the serial FFTW routines. All of the MPI-specific routines
are prefixed with ‘fftw_mpi_’ instead of ‘fftw_’. There are a few important differences,
however:

First, we must call fftw_mpi_init() after calling MPI_Init (required in all MPI programs)
and before calling any other ‘fftw_mpi_’ routine.

Second, when we create the plan with fftw_mpi_plan_dft_2d, analogous to fftw_plan_

dft_2d, we pass an additional argument: the communicator, indicating which processes will
participate in the transform (here MPI_COMM_WORLD, indicating all processes). Whenever you
create, execute, or destroy a plan for an MPI transform, you must call the corresponding
FFTW routine on all processes in the communicator for that transform. (That is, these are
collective calls.) Note that the plan for the MPI transform uses the standard fftw_execute

and fftw_destroy routines (on the other hand, there are MPI-specific new-array execute
functions documented below).

Third, all of the FFTW MPI routines take ptrdiff_t arguments instead of int as for the
serial FFTW. ptrdiff_t is a standard C integer type which is (at least) 32 bits wide on a
32-bit machine and 64 bits wide on a 64-bit machine. This is to make it easy to specify very
large parallel transforms on a 64-bit machine. (You can specify 64-bit transform sizes in
the serial FFTW, too, but only by using the ‘guru64’ planner interface. See Section 4.5.6
[64-bit Guru Interface], page 38.)

Fourth, and most importantly, you don’t allocate the entire two-dimensional array on each
process. Instead, you call fftw_mpi_local_size_2d to find out what portion of the array
resides on each processor, and how much space to allocate. Here, the portion of the array on
each process is a local_n0 by N1 slice of the total array, starting at index local_0_start.
The total number of fftw_complex numbers to allocate is given by the alloc_local return
value, which may be greater than local_n0 * N1 (in case some intermediate calculations
require additional storage). The data distribution in FFTW’s MPI interface is described in
more detail by the next section.

Given the portion of the array that resides on the local process, it is straightforward to
initialize the data (here to a function myfunction) and otherwise manipulate it. Of course,

56 FFTW 3.3.4

at the end of the program you may want to output the data somehow, but synchronizing
this output is up to you and is beyond the scope of this manual. (One good way to output
a large multi-dimensional distributed array in MPI to a portable binary file is to use the
free HDF5 library; see the HDF home page.)

6.4 MPI Data Distribution

The most important concept to understand in using FFTW’s MPI interface is the data
distribution. With a serial or multithreaded FFT, all of the inputs and outputs are stored
as a single contiguous chunk of memory. With a distributed-memory FFT, the inputs and
outputs are broken into disjoint blocks, one per process.

In particular, FFTW uses a 1d block distribution of the data, distributed along the first
dimension. For example, if you want to perform a 100 × 200 complex DFT, distributed
over 4 processes, each process will get a 25 × 200 slice of the data. That is, process 0
will get rows 0 through 24, process 1 will get rows 25 through 49, process 2 will get rows
50 through 74, and process 3 will get rows 75 through 99. If you take the same array but
distribute it over 3 processes, then it is not evenly divisible so the different processes will
have unequal chunks. FFTW’s default choice in this case is to assign 34 rows to processes
0 and 1, and 32 rows to process 2.

FFTW provides several ‘fftw_mpi_local_size’ routines that you can call to find out what
portion of an array is stored on the current process. In most cases, you should use the
default block sizes picked by FFTW, but it is also possible to specify your own block size.
For example, with a 100× 200 array on three processes, you can tell FFTW to use a block
size of 40, which would assign 40 rows to processes 0 and 1, and 20 rows to process 2.
FFTW’s default is to divide the data equally among the processes if possible, and as best
it can otherwise. The rows are always assigned in “rank order,” i.e. process 0 gets the first
block of rows, then process 1, and so on. (You can change this by using MPI_Comm_split

to create a new communicator with re-ordered processes.) However, you should always call
the ‘fftw_mpi_local_size’ routines, if possible, rather than trying to predict FFTW’s
distribution choices.

In particular, it is critical that you allocate the storage size that is returned by
‘fftw_mpi_local_size’, which is not necessarily the size of the local slice of the array.
The reason is that intermediate steps of FFTW’s algorithms involve transposing the array
and redistributing the data, so at these intermediate steps FFTW may require more
local storage space (albeit always proportional to the total size divided by the number of
processes). The ‘fftw_mpi_local_size’ functions know how much storage is required for
these intermediate steps and tell you the correct amount to allocate.

6.4.1 Basic and advanced distribution interfaces

As with the planner interface, the ‘fftw_mpi_local_size’ distribution interface is broken
into basic and advanced (‘_many’) interfaces, where the latter allows you to specify the block
size manually and also to request block sizes when computing multiple transforms simulta-
neously. These functions are documented more exhaustively by the FFTW MPI Reference,
but we summarize the basic ideas here using a couple of two-dimensional examples.

For the 100× 200 complex-DFT example, above, we would find the distribution by calling
the following function in the basic interface:

http://www.hdfgroup.org/

Chapter 6: Distributed-memory FFTW with MPI 57

ptrdiff_t fftw_mpi_local_size_2d(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start);

Given the total size of the data to be transformed (here, n0 = 100 and n1 = 200) and an
MPI communicator (comm), this function provides three numbers.

First, it describes the shape of the local data: the current process should store a local_n0

by n1 slice of the overall dataset, in row-major order (n1 dimension contiguous), starting
at index local_0_start. That is, if the total dataset is viewed as a n0 by n1 matrix,
the current process should store the rows local_0_start to local_0_start+local_n0-

1. Obviously, if you are running with only a single MPI process, that process will store
the entire array: local_0_start will be zero and local_n0 will be n0. See Section 3.2.1
[Row-major Format], page 15.

Second, the return value is the total number of data elements (e.g., complex numbers for a
complex DFT) that should be allocated for the input and output arrays on the current pro-
cess (ideally with fftw_malloc or an ‘fftw_alloc’ function, to ensure optimal alignment).
It might seem that this should always be equal to local_n0 * n1, but this is not the case.
FFTW’s distributed FFT algorithms require data redistributions at intermediate stages of
the transform, and in some circumstances this may require slightly larger local storage.
This is discussed in more detail below, under Section 6.4.2 [Load balancing], page 58.

The advanced-interface ‘local_size’ function for multidimensional transforms returns the
same three things (local_n0, local_0_start, and the total number of elements to allocate),
but takes more inputs:

ptrdiff_t fftw_mpi_local_size_many(int rnk, const ptrdiff_t *n,

ptrdiff_t howmany,

ptrdiff_t block0,

MPI_Comm comm,

ptrdiff_t *local_n0,

ptrdiff_t *local_0_start);

The two-dimensional case above corresponds to rnk = 2 and an array n of length 2 with
n[0] = n0 and n[1] = n1. This routine is for any rnk > 1; one-dimensional transforms have
their own interface because they work slightly differently, as discussed below.

First, the advanced interface allows you to perform multiple transforms at once, of inter-
leaved data, as specified by the howmany parameter. (hoamany is 1 for a single transform.)

Second, here you can specify your desired block size in the n0 dimension, block0. To use
FFTW’s default block size, pass FFTW_MPI_DEFAULT_BLOCK (0) for block0. Otherwise, on
P processes, FFTW will return local_n0 equal to block0 on the first P / block0 processes
(rounded down), return local_n0 equal to n0 - block0 * (P / block0) on the next process,
and local_n0 equal to zero on any remaining processes. In general, we recommend using
the default block size (which corresponds to n0 / P, rounded up).

For example, suppose you have P = 4 processes and n0 = 21. The default will be a block
size of 6, which will give local_n0 = 6 on the first three processes and local_n0 = 3 on the
last process. Instead, however, you could specify block0 = 5 if you wanted, which would
give local_n0 = 5 on processes 0 to 2, local_n0 = 6 on process 3. (This choice, while it
may look superficially more “balanced,” has the same critical path as FFTW’s default but
requires more communications.)

58 FFTW 3.3.4

6.4.2 Load balancing

Ideally, when you parallelize a transform over some P processes, each process should end up
with work that takes equal time. Otherwise, all of the processes end up waiting on whichever
process is slowest. This goal is known as “load balancing.” In this section, we describe the
circumstances under which FFTW is able to load-balance well, and in particular how you
should choose your transform size in order to load balance.

Load balancing is especially difficult when you are parallelizing over heterogeneous ma-
chines; for example, if one of your processors is a old 486 and another is a Pentium IV,
obviously you should give the Pentium more work to do than the 486 since the latter is much
slower. FFTW does not deal with this problem, however—it assumes that your processes
run on hardware of comparable speed, and that the goal is therefore to divide the problem
as equally as possible.

For a multi-dimensional complex DFT, FFTW can divide the problem equally among the
processes if: (i) the first dimension n0 is divisible by P ; and (ii), the product of the sub-
sequent dimensions is divisible by P . (For the advanced interface, where you can specify
multiple simultaneous transforms via some “vector” length howmany, a factor of howmany is
included in the product of the subsequent dimensions.)

For a one-dimensional complex DFT, the length N of the data should be divisible by P
squared to be able to divide the problem equally among the processes.

6.4.3 Transposed distributions

Internally, FFTW’s MPI transform algorithms work by first computing transforms of the
data local to each process, then by globally transposing the data in some fashion to redis-
tribute the data among the processes, transforming the new data local to each process, and
transposing back. For example, a two-dimensional n0 by n1 array, distributed across the
n0 dimension, is transformd by: (i) transforming the n1 dimension, which are local to each
process; (ii) transposing to an n1 by n0 array, distributed across the n1 dimension; (iii)
transforming the n0 dimension, which is now local to each process; (iv) transposing back.

However, in many applications it is acceptable to compute a multidimensional DFT whose
results are produced in transposed order (e.g., n1 by n0 in two dimensions). This provides
a significant performance advantage, because it means that the final transposition step
can be omitted. FFTW supports this optimization, which you specify by passing the flag
FFTW_MPI_TRANSPOSED_OUT to the planner routines. To compute the inverse transform of
transposed output, you specify FFTW_MPI_TRANSPOSED_IN to tell it that the input is trans-
posed. In this section, we explain how to interpret the output format of such a transform.

Suppose you have are transforming multi-dimensional data with (at least two) dimensions
n0 × n1 × n2 × · · · × nd−1 . As always, it is distributed along the first dimension n0 . Now,
if we compute its DFT with the FFTW_MPI_TRANSPOSED_OUT flag, the resulting output data
are stored with the first two dimensions transposed: n1 × n0 × n2 × · · · × nd−1 , distributed
along the n1 dimension. Conversely, if we take the n1 × n0 × n2 × · · · × nd−1 data and
transform it with the FFTW_MPI_TRANSPOSED_IN flag, then the format goes back to the
original n0 × n1 × n2 × · · · × nd−1 array.

Chapter 6: Distributed-memory FFTW with MPI 59

There are two ways to find the portion of the transposed array that resides on the cur-
rent process. First, you can simply call the appropriate ‘local_size’ function, passing
n1 × n0 × n2 × · · · × nd−1 (the transposed dimensions). This would mean calling the
‘local_size’ function twice, once for the transposed and once for the non-transposed di-
mensions. Alternatively, you can call one of the ‘local_size_transposed’ functions, which
returns both the non-transposed and transposed data distribution from a single call. For
example, for a 3d transform with transposed output (or input), you might call:

ptrdiff_t fftw_mpi_local_size_3d_transposed(

ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start,

ptrdiff_t *local_n1, ptrdiff_t *local_1_start);

Here, local_n0 and local_0_start give the size and starting index of the n0 dimension for
the non-transposed data, as in the previous sections. For transposed data (e.g. the output
for FFTW_MPI_TRANSPOSED_OUT), local_n1 and local_1_start give the size and starting
index of the n1 dimension, which is the first dimension of the transposed data (n1 by n0 by
n2).

(Note that FFTW_MPI_TRANSPOSED_IN is completely equivalent to performing FFTW_MPI_

TRANSPOSED_OUT and passing the first two dimensions to the planner in reverse order, or
vice versa. If you pass both the FFTW_MPI_TRANSPOSED_IN and FFTW_MPI_TRANSPOSED_OUT

flags, it is equivalent to swapping the first two dimensions passed to the planner and passing
neither flag.)

6.4.4 One-dimensional distributions

For one-dimensional distributed DFTs using FFTW, matters are slightly more complicated
because the data distribution is more closely tied to how the algorithm works. In particular,
you can no longer pass an arbitrary block size and must accept FFTW’s default; also, the
block sizes may be different for input and output. Also, the data distribution depends on
the flags and transform direction, in order for forward and backward transforms to work
correctly.

ptrdiff_t fftw_mpi_local_size_1d(ptrdiff_t n0, MPI_Comm comm,

int sign, unsigned flags,

ptrdiff_t *local_ni, ptrdiff_t *local_i_start,

ptrdiff_t *local_no, ptrdiff_t *local_o_start);

This function computes the data distribution for a 1d transform of size n0 with the given
transform sign and flags. Both input and output data use block distributions. The input
on the current process will consist of local_ni numbers starting at index local_i_start;
e.g. if only a single process is used, then local_ni will be n0 and local_i_start will be
0. Similarly for the output, with local_no numbers starting at index local_o_start. The
return value of fftw_mpi_local_size_1d will be the total number of elements to allocate
on the current process (which might be slightly larger than the local size due to intermediate
steps in the algorithm).

As mentioned above (see Section 6.4.2 [Load balancing], page 58), the data will be divided
equally among the processes if n0 is divisible by the square of the number of processes. In
this case, local_ni will equal local_no. Otherwise, they may be different.

60 FFTW 3.3.4

For some applications, such as convolutions, the order of the output data is irrelevant. In
this case, performance can be improved by specifying that the output data be stored in an
FFTW-defined “scrambled” format. (In particular, this is the analogue of transposed output
in the multidimensional case: scrambled output saves a communications step.) If you pass
FFTW_MPI_SCRAMBLED_OUT in the flags, then the output is stored in this (undocumented)
scrambled order. Conversely, to perform the inverse transform of data in scrambled order,
pass the FFTW_MPI_SCRAMBLED_IN flag.

In MPI FFTW, only composite sizes n0 can be parallelized; we have not yet implemented
a parallel algorithm for large prime sizes.

6.5 Multi-dimensional MPI DFTs of Real Data

FFTW’s MPI interface also supports multi-dimensional DFTs of real data, similar to the
serial r2c and c2r interfaces. (Parallel one-dimensional real-data DFTs are not currently
supported; you must use a complex transform and set the imaginary parts of the inputs to
zero.)

The key points to understand for r2c and c2r MPI transforms (compared to the MPI complex
DFTs or the serial r2c/c2r transforms), are:

• Just as for serial transforms, r2c/c2r DFTs transform n0 × n1 × n2 × · · · × nd−1 real
data to/from n0×n1×n2×· · ·× (nd−1/2+1) complex data: the last dimension of the
complex data is cut in half (rounded down), plus one. As for the serial transforms, the
sizes you pass to the ‘plan_dft_r2c’ and ‘plan_dft_c2r’ are the n0×n1×n2×· · ·×nd−1
dimensions of the real data.

• Although the real data is conceptually n0×n1×n2×· · ·×nd−1 , it is physically stored as
an n0×n1×n2×· · ·× [2(nd−1/2+1)] array, where the last dimension has been padded
to make it the same size as the complex output. This is much like the in-place serial
r2c/c2r interface (see Section 2.4 [Multi-Dimensional DFTs of Real Data], page 7),
except that in MPI the padding is required even for out-of-place data. The extra
padding numbers are ignored by FFTW (they are not like zero-padding the transform
to a larger size); they are only used to determine the data layout.

• The data distribution in MPI for both the real and complex data is determined by the
shape of the complex data. That is, you call the appropriate ‘local size’ function for
the n0×n1×n2×· · ·× (nd−1/2+1) complex data, and then use the same distribution
for the real data except that the last complex dimension is replaced by a (padded) real
dimension of twice the length.

For example suppose we are performing an out-of-place r2c transform of L×M ×N real
data [padded to L×M ×2(N/2+1)], resulting in L×M ×N/2+1 complex data. Similar
to the example in Section 6.3 [2d MPI example], page 54, we might do something like:

#include <fftw3-mpi.h>

int main(int argc, char **argv)

{

const ptrdiff_t L = ..., M = ..., N = ...;

fftw_plan plan;

Chapter 6: Distributed-memory FFTW with MPI 61

double *rin;

fftw_complex *cout;

ptrdiff_t alloc_local, local_n0, local_0_start, i, j, k;

MPI_Init(&argc, &argv);

fftw_mpi_init();

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD,

&local_n0, &local_0_start);

rin = fftw_alloc_real(2 * alloc_local);

cout = fftw_alloc_complex(alloc_local);

/* create plan for out-of-place r2c DFT */

plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD,

FFTW_MEASURE);

/* initialize rin to some function my_func(x,y,z) */

for (i = 0; i < local_n0; ++i)

for (j = 0; j < M; ++j)

for (k = 0; k < N; ++k)

rin[(i*M + j) * (2*(N/2+1)) + k] = my_func(local_0_start+i, j, k);

/* compute transforms as many times as desired */

fftw_execute(plan);

fftw_destroy_plan(plan);

MPI_Finalize();

}

Note that we allocated rin using fftw_alloc_real with an argument of 2 * alloc_local:
since alloc_local is the number of complex values to allocate, the number of real values
is twice as many. The rin array is then localn0×M × 2(N/2 + 1) in row-major order, so
its (i,j,k) element is at the index (i*M + j) * (2*(N/2+1)) + k (see 〈undefined〉 [Multi-
dimensional Array Format], page 〈undefined〉).

As for the complex transforms, improved performance can be obtained by specifying that
the output is the transpose of the input or vice versa (see Section 6.4.3 [Transposed distri-
butions], page 58). In our L×M ×N r2c example, including FFTW_TRANSPOSED_OUT in the
flags means that the input would be a padded L×M × 2(N/2 + 1) real array distributed
over the L dimension, while the output would be a M × L × N/2 + 1 complex array dis-
tributed over the M dimension. To perform the inverse c2r transform with the same data
distributions, you would use the FFTW_TRANSPOSED_IN flag.

62 FFTW 3.3.4

6.6 Other multi-dimensional Real-Data MPI Transforms

FFTW’s MPI interface also supports multi-dimensional ‘r2r’ transforms of all kinds sup-
ported by the serial interface (e.g. discrete cosine and sine transforms, discrete Hartley
transforms, etc.). Only multi-dimensional ‘r2r’ transforms, not one-dimensional trans-
forms, are currently parallelized.

These are used much like the multidimensional complex DFTs discussed above, except that
the data is real rather than complex, and one needs to pass an r2r transform kind (fftw_
r2r_kind) for each dimension as in the serial FFTW (see Section 2.5 [More DFTs of Real
Data], page 10).

For example, one might perform a two-dimensional L×M that is an REDFT10 (DCT-II)
in the first dimension and an RODFT10 (DST-II) in the second dimension with code like:

const ptrdiff_t L = ..., M = ...;

fftw_plan plan;

double *data;

ptrdiff_t alloc_local, local_n0, local_0_start, i, j;

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_2d(L, M, MPI_COMM_WORLD,

&local_n0, &local_0_start);

data = fftw_alloc_real(alloc_local);

/* create plan for in-place REDFT10 x RODFT10 */

plan = fftw_mpi_plan_r2r_2d(L, M, data, data, MPI_COMM_WORLD,

FFTW_REDFT10, FFTW_RODFT10, FFTW_MEASURE);

/* initialize data to some function my_function(x,y) */

for (i = 0; i < local_n0; ++i) for (j = 0; j < M; ++j)

data[i*M + j] = my_function(local_0_start + i, j);

/* compute transforms, in-place, as many times as desired */

fftw_execute(plan);

fftw_destroy_plan(plan);

Notice that we use the same ‘local_size’ functions as we did for complex data, only now
we interpret the sizes in terms of real rather than complex values, and correspondingly use
fftw_alloc_real.

6.7 FFTW MPI Transposes

The FFTW’s MPI Fourier transforms rely on one or more global transposition step for their
communications. For example, the multidimensional transforms work by transforming along
some dimensions, then transposing to make the first dimension local and transforming that,
then transposing back. Because global transposition of a block-distributed matrix has many
other potential uses besides FFTs, FFTW’s transpose routines can be called directly, as
documented in this section.

Chapter 6: Distributed-memory FFTW with MPI 63

6.7.1 Basic distributed-transpose interface

In particular, suppose that we have an n0 by n1 array in row-major order, block-distributed
across the n0 dimension. To transpose this into an n1 by n0 array block-distributed across
the n1 dimension, we would create a plan by calling the following function:

fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1,

double *in, double *out,

MPI_Comm comm, unsigned flags);

The input and output arrays (in and out) can be the same. The transpose is actually
executed by calling fftw_execute on the plan, as usual.

The flags are the usual FFTW planner flags, but support two additional flags: FFTW_

MPI_TRANSPOSED_OUT and/or FFTW_MPI_TRANSPOSED_IN. What these flags indicate, for
transpose plans, is that the output and/or input, respectively, are locally transposed. That
is, on each process input data is normally stored as a local_n0 by n1 array in row-major
order, but for an FFTW_MPI_TRANSPOSED_IN plan the input data is stored as n1 by local_n0

in row-major order. Similarly, FFTW_MPI_TRANSPOSED_OUT means that the output is n0 by
local_n1 instead of local_n1 by n0.

To determine the local size of the array on each process before and after the transpose, as
well as the amount of storage that must be allocated, one should call fftw_mpi_local_
size_2d_transposed, just as for a 2d DFT as described in the previous section:

ptrdiff_t fftw_mpi_local_size_2d_transposed

(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start,

ptrdiff_t *local_n1, ptrdiff_t *local_1_start);

Again, the return value is the local storage to allocate, which in this case is the number of
real (double) values rather than complex numbers as in the previous examples.

6.7.2 Advanced distributed-transpose interface

The above routines are for a transpose of a matrix of numbers (of type double), using
FFTW’s default block sizes. More generally, one can perform transposes of tuples of num-
bers, with user-specified block sizes for the input and output:

fftw_plan fftw_mpi_plan_many_transpose

(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany,

ptrdiff_t block0, ptrdiff_t block1,

double *in, double *out, MPI_Comm comm, unsigned flags);

In this case, one is transposing an n0 by n1 matrix of howmany-tuples (e.g. howmany = 2

for complex numbers). The input is distributed along the n0 dimension with block size
block0, and the n1 by n0 output is distributed along the n1 dimension with block size
block1. If FFTW_MPI_DEFAULT_BLOCK (0) is passed for a block size then FFTW uses its
default block size. To get the local size of the data on each process, you should then call
fftw_mpi_local_size_many_transposed.

64 FFTW 3.3.4

6.7.3 An improved replacement for MPI Alltoall

We close this section by noting that FFTW’s MPI transpose routines can be thought of as
a generalization for the MPI_Alltoall function (albeit only for floating-point types), and
in some circumstances can function as an improved replacement.

MPI_Alltoall is defined by the MPI standard as:

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcnt, MPI_Datatype recvtype,

MPI_Comm comm);

In particular, for double* arrays in and out, consider the call:

MPI_Alltoall(in, howmany, MPI_DOUBLE, out, howmany MPI_DOUBLE, comm);

This is completely equivalent to:

MPI_Comm_size(comm, &P);

plan = fftw_mpi_plan_many_transpose(P, P, howmany, 1, 1, in, out, comm, FFTW_ESTIMATE);

fftw_execute(plan);

fftw_destroy_plan(plan);

That is, computing a P × P transpose on P processes, with a block size of 1, is just a
standard all-to-all communication.

However, using the FFTW routine instead of MPI_Alltoall may have certain advantages.
First of all, FFTW’s routine can operate in-place (in == out) whereas MPI_Alltoall can
only operate out-of-place.

Second, even for out-of-place plans, FFTW’s routine may be faster, especially if you need
to perform the all-to-all communication many times and can afford to use FFTW_MEASURE or
FFTW_PATIENT. It should certainly be no slower, not including the time to create the plan,
since one of the possible algorithms that FFTW uses for an out-of-place transpose is simply
to call MPI_Alltoall. However, FFTW also considers several other possible algorithms
that, depending on your MPI implementation and your hardware, may be faster.

6.8 FFTW MPI Wisdom

FFTW’s “wisdom” facility (see Section 3.3 [Words of Wisdom-Saving Plans], page 18) can
be used to save MPI plans as well as to save uniprocessor plans. However, for MPI there
are several unavoidable complications.

First, the MPI standard does not guarantee that every process can perform file I/O (at
least, not using C stdio routines)—in general, we may only assume that process 0 is capable
of I/O.1 So, if we want to export the wisdom from a single process to a file, we must first
export the wisdom to a string, then send it to process 0, then write it to a file.

1 In fact, even this assumption is not technically guaranteed by the standard, although it seems to be universal
in actual MPI implementations and is widely assumed by MPI-using software. Technically, you need to query
the MPI_IO attribute of MPI_COMM_WORLD with MPI_Attr_get. If this attribute is MPI_PROC_NULL, no I/O is
possible. If it is MPI_ANY_SOURCE, any process can perform I/O. Otherwise, it is the rank of a process that
can perform I/O ... but since it is not guaranteed to yield the same rank on all processes, you have to do
an MPI_Allreduce of some kind if you want all processes to agree about which is going to do I/O. And even
then, the standard only guarantees that this process can perform output, but not input. See e.g. Parallel
Programming with MPI by P. S. Pacheco, section 8.1.3. Needless to say, in our experience virtually no MPI
programmers worry about this.

Chapter 6: Distributed-memory FFTW with MPI 65

Second, in principle we may want to have separate wisdom for every process, since in
general the processes may run on different hardware even for a single MPI program. How-
ever, in practice FFTW’s MPI code is designed for the case of homogeneous hardware (see
Section 6.4.2 [Load balancing], page 58), and in this case it is convenient to use the same
wisdom for every process. Thus, we need a mechanism to synchronize the wisdom.

To address both of these problems, FFTW provides the following two functions:

void fftw_mpi_broadcast_wisdom(MPI_Comm comm);

void fftw_mpi_gather_wisdom(MPI_Comm comm);

Given a communicator comm, fftw_mpi_broadcast_wisdom will broadcast the wisdom from
process 0 to all other processes. Conversely, fftw_mpi_gather_wisdom will collect wisdom
from all processes onto process 0. (If the plans created for the same problem by different
processes are not the same, fftw_mpi_gather_wisdom will arbitrarily choose one of the
plans.) Both of these functions may result in suboptimal plans for different processes if
the processes are running on non-identical hardware. Both of these functions are collective
calls, which means that they must be executed by all processes in the communicator.

So, for example, a typical code snippet to import wisdom from a file and use it on all
processes would be:

{

int rank;

fftw_mpi_init();

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) fftw_import_wisdom_from_filename("mywisdom");

fftw_mpi_broadcast_wisdom(MPI_COMM_WORLD);

}

(Note that we must call fftw_mpi_init before importing any wisdom that might contain
MPI plans.) Similarly, a typical code snippet to export wisdom from all processes to a file
is:

{

int rank;

fftw_mpi_gather_wisdom(MPI_COMM_WORLD);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) fftw_export_wisdom_to_filename("mywisdom");

}

6.9 Avoiding MPI Deadlocks

An MPI program can deadlock if one process is waiting for a message from another process
that never gets sent. To avoid deadlocks when using FFTW’s MPI routines, it is important
to know which functions are collective: that is, which functions must always be called in
the same order from every process in a given communicator. (For example, MPI_Barrier
is the canonical example of a collective function in the MPI standard.)

The functions in FFTW that are always collective are: every function beginning with
‘fftw_mpi_plan’, as well as fftw_mpi_broadcast_wisdom and fftw_mpi_gather_wisdom.

66 FFTW 3.3.4

Also, the following functions from the ordinary FFTW interface are collective when they are
applied to a plan created by an ‘fftw_mpi_plan’ function: fftw_execute, fftw_destroy_
plan, and fftw_flops.

6.10 FFTW MPI Performance Tips

In this section, we collect a few tips on getting the best performance out of FFTW’s MPI
transforms.

First, because of the 1d block distribution, FFTW’s parallelization is currently limited by
the size of the first dimension. (Multidimensional block distributions may be supported by
a future version.) More generally, you should ideally arrange the dimensions so that FFTW
can divide them equally among the processes. See Section 6.4.2 [Load balancing], page 58.

Second, if it is not too inconvenient, you should consider working with transposed output
for multidimensional plans, as this saves a considerable amount of communications. See
Section 6.4.3 [Transposed distributions], page 58.

Third, the fastest choices are generally either an in-place transform or an out-of-place
transform with the FFTW_DESTROY_INPUT flag (which allows the input array to be used as
scratch space). In-place is especially beneficial if the amount of data per process is large.

Fourth, if you have multiple arrays to transform at once, rather than calling FFTW’s MPI
transforms several times it usually seems to be faster to interleave the data and use the
advanced interface. (This groups the communications together instead of requiring separate
messages for each transform.)

6.11 Combining MPI and Threads

In certain cases, it may be advantageous to combine MPI (distributed-memory) and threads
(shared-memory) parallelization. FFTW supports this, with certain caveats. For example,
if you have a cluster of 4-processor shared-memory nodes, you may want to use threads
within the nodes and MPI between the nodes, instead of MPI for all parallelization.

In particular, it is possible to seamlessly combine the MPI FFTW routines with the multi-
threaded FFTW routines (see Chapter 5 [Multi-threaded FFTW], page 49). However, some
care must be taken in the initialization code, which should look something like this:

int threads_ok;

int main(int argc, char **argv)

{

int provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);

threads_ok = provided >= MPI_THREAD_FUNNELED;

if (threads_ok) threads_ok = fftw_init_threads();

fftw_mpi_init();

...

if (threads_ok) fftw_plan_with_nthreads(...);

Chapter 6: Distributed-memory FFTW with MPI 67

...

MPI_Finalize();

}

First, note that instead of calling MPI_Init, you should call MPI_Init_threads, which is the
initialization routine defined by the MPI-2 standard to indicate to MPI that your program
will be multithreaded. We pass MPI_THREAD_FUNNELED, which indicates that we will only
call MPI routines from the main thread. (FFTW will launch additional threads internally,
but the extra threads will not call MPI code.) (You may also pass MPI_THREAD_SERIALIZED
or MPI_THREAD_MULTIPLE, which requests additional multithreading support from the MPI
implementation, but this is not required by FFTW.) The provided parameter returns what
level of threads support is actually supported by your MPI implementation; this must be
at least MPI_THREAD_FUNNELED if you want to call the FFTW threads routines, so we define
a global variable threads_ok to record this. You should only call fftw_init_threads or
fftw_plan_with_nthreads if threads_ok is true. For more information on thread safety
in MPI, see the MPI and Threads section of the MPI-2 standard.

Second, we must call fftw_init_threads before fftw_mpi_init. This is critical for tech-
nical reasons having to do with how FFTW initializes its list of algorithms.

Then, if you call fftw_plan_with_nthreads(N), every MPI process will launch (up to) N
threads to parallelize its transforms.

For example, in the hypothetical cluster of 4-processor nodes, you might wish to launch
only a single MPI process per node, and then call fftw_plan_with_nthreads(4) on each
process to use all processors in the nodes.

This may or may not be faster than simply using as many MPI processes as you have
processors, however. On the one hand, using threads within a node eliminates the need for
explicit message passing within the node. On the other hand, FFTW’s transpose routines
are not multi-threaded, and this means that the communications that do take place will
not benefit from parallelization within the node. Moreover, many MPI implementations
already have optimizations to exploit shared memory when it is available, so adding the
multithreaded FFTW on top of this may be superfluous.

6.12 FFTW MPI Reference

This chapter provides a complete reference to all FFTW MPI functions, datatypes, and
constants. See also Chapter 4 [FFTW Reference], page 21 for information on functions and
types in common with the serial interface.

6.12.1 MPI Files and Data Types

All programs using FFTW’s MPI support should include its header file:

#include <fftw3-mpi.h>

Note that this header file includes the serial-FFTW fftw3.h header file, and also the mpi.h
header file for MPI, so you need not include those files separately.

You must also link to both the FFTW MPI library and to the serial FFTW library. On
Unix, this means adding -lfftw3_mpi -lfftw3 -lm at the end of the link command.

http://www.mpi-forum.org/docs/mpi-20-html/node162.htm

68 FFTW 3.3.4

Different precisions are handled as in the serial interface: See Section 4.1.2 [Precision],
page 21. That is, ‘fftw_’ functions become fftwf_ (in single precision) etcetera, and the
libraries become -lfftw3f_mpi -lfftw3f -lm etcetera on Unix. Long-double precision is
supported in MPI, but quad precision (‘fftwq_’) is not due to the lack of MPI support for
this type.

6.12.2 MPI Initialization

Before calling any other FFTW MPI (‘fftw_mpi_’) function, and before importing any
wisdom for MPI problems, you must call:

void fftw_mpi_init(void);

If FFTW threads support is used, however, fftw_mpi_init should be called after fftw_

init_threads (see Section 6.11 [Combining MPI and Threads], page 66). Calling fftw_

mpi_init additional times (before fftw_mpi_cleanup) has no effect.

If you want to deallocate all persistent data and reset FFTW to the pristine state it was in
when you started your program, you can call:

void fftw_mpi_cleanup(void);

(This calls fftw_cleanup, so you need not call the serial cleanup routine too, although it is
safe to do so.) After calling fftw_mpi_cleanup, all existing plans become undefined, and
you should not attempt to execute or destroy them. You must call fftw_mpi_init again
after fftw_mpi_cleanup if you want to resume using the MPI FFTW routines.

6.12.3 Using MPI Plans

Once an MPI plan is created, you can execute and destroy it using fftw_execute, fftw_
destroy_plan, and the other functions in the serial interface that operate on generic plans
(see Section 4.2 [Using Plans], page 22).

The fftw_execute and fftw_destroy_plan functions, applied to MPI plans, are collective
calls: they must be called for all processes in the communicator that was used to create the
plan.

You must not use the serial new-array plan-execution functions fftw_execute_dft and so
on (see Section 4.6 [New-array Execute Functions], page 38) with MPI plans. Such functions
are specialized to the problem type, and there are specific new-array execute functions for
MPI plans:

void fftw_mpi_execute_dft(fftw_plan p, fftw_complex *in, fftw_complex *out);

void fftw_mpi_execute_dft_r2c(fftw_plan p, double *in, fftw_complex *out);

void fftw_mpi_execute_dft_c2r(fftw_plan p, fftw_complex *in, double *out);

void fftw_mpi_execute_r2r(fftw_plan p, double *in, double *out);

These functions have the same restrictions as those of the serial new-array execute functions.
They are always safe to apply to the same in and out arrays that were used to create
the plan. They can only be applied to new arrarys if those arrays have the same types,
dimensions, in-placeness, and alignment as the original arrays, where the best way to ensure
the same alignment is to use FFTW’s fftw_malloc and related allocation functions for all
arrays (see Section 4.1.3 [Memory Allocation], page 22). Note that distributed transposes
(see Section 6.7 [FFTW MPI Transposes], page 62) use fftw_mpi_execute_r2r, since they
count as rank-zero r2r plans from FFTW’s perspective.

Chapter 6: Distributed-memory FFTW with MPI 69

6.12.4 MPI Data Distribution Functions

As described above (see Section 6.4 [MPI Data Distribution], page 56), in order to allocate
your arrays, before creating a plan, you must first call one of the following routines to
determine the required allocation size and the portion of the array locally stored on a given
process. The MPI_Comm communicator passed here must be equivalent to the communicator
used below for plan creation.

The basic interface for multidimensional transforms consists of the functions:

ptrdiff_t fftw_mpi_local_size_2d(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start);

ptrdiff_t fftw_mpi_local_size_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,

MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start);

ptrdiff_t fftw_mpi_local_size(int rnk, const ptrdiff_t *n, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start);

ptrdiff_t fftw_mpi_local_size_2d_transposed(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start,

ptrdiff_t *local_n1, ptrdiff_t *local_1_start);

ptrdiff_t fftw_mpi_local_size_3d_transposed(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,

MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start,

ptrdiff_t *local_n1, ptrdiff_t *local_1_start);

ptrdiff_t fftw_mpi_local_size_transposed(int rnk, const ptrdiff_t *n, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start,

ptrdiff_t *local_n1, ptrdiff_t *local_1_start);

These functions return the number of elements to allocate (complex numbers for
DFT/r2c/c2r plans, real numbers for r2r plans), whereas the local_n0 and local_

0_start return the portion (local_0_start to local_0_start + local_n0 - 1) of
the first dimension of an n0 × n1 × n2 × · · · × nd−1 array that is stored on the local
process. See Section 6.4.1 [Basic and advanced distribution interfaces], page 56. For
FFTW_MPI_TRANSPOSED_OUT plans, the ‘_transposed’ variants are useful in order to also
return the local portion of the first dimension in the n1 × n0 × n2 × · · · × nd−1 transposed
output. See Section 6.4.3 [Transposed distributions], page 58. The advanced interface for
multidimensional transforms is:

ptrdiff_t fftw_mpi_local_size_many(int rnk, const ptrdiff_t *n, ptrdiff_t howmany,

ptrdiff_t block0, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start);

ptrdiff_t fftw_mpi_local_size_many_transposed(int rnk, const ptrdiff_t *n, ptrdiff_t howmany,

ptrdiff_t block0, ptrdiff_t block1, MPI_Comm comm,

ptrdiff_t *local_n0, ptrdiff_t *local_0_start,

ptrdiff_t *local_n1, ptrdiff_t *local_1_start);

These differ from the basic interface in only two ways. First, they allow you to specify block
sizes block0 and block1 (the latter for the transposed output); you can pass FFTW_MPI_
DEFAULT_BLOCK to use FFTW’s default block size as in the basic interface. Second, you

70 FFTW 3.3.4

can pass a howmany parameter, corresponding to the advanced planning interface below:
this is for transforms of contiguous howmany-tuples of numbers (howmany = 1 in the basic
interface).

The corresponding basic and advanced routines for one-dimensional transforms (currently
only complex DFTs) are:

ptrdiff_t fftw_mpi_local_size_1d(

ptrdiff_t n0, MPI_Comm comm, int sign, unsigned flags,

ptrdiff_t *local_ni, ptrdiff_t *local_i_start,

ptrdiff_t *local_no, ptrdiff_t *local_o_start);

ptrdiff_t fftw_mpi_local_size_many_1d(

ptrdiff_t n0, ptrdiff_t howmany,

MPI_Comm comm, int sign, unsigned flags,

ptrdiff_t *local_ni, ptrdiff_t *local_i_start,

ptrdiff_t *local_no, ptrdiff_t *local_o_start);

As above, the return value is the number of elements to allocate (complex numbers, for
complex DFTs). The local_ni and local_i_start arguments return the portion (local_
i_start to local_i_start + local_ni - 1) of the 1d array that is stored on this process for
the transform input, and local_no and local_o_start are the corresponding quantities
for the input. The sign (FFTW_FORWARD or FFTW_BACKWARD) and flags must match the
arguments passed when creating a plan. Although the inputs and outputs have different
data distributions in general, it is guaranteed that the output data distribution of an FFTW_

FORWARD plan will match the input data distribution of an FFTW_BACKWARD plan and vice
versa; similarly for the FFTW_MPI_SCRAMBLED_OUT and FFTW_MPI_SCRAMBLED_IN flags. See
Section 6.4.4 [One-dimensional distributions], page 59.

6.12.5 MPI Plan Creation

Complex-data MPI DFTs

Plans for complex-data DFTs (see Section 6.3 [2d MPI example], page 54) are created by:

fftw_plan fftw_mpi_plan_dft_1d(ptrdiff_t n0, fftw_complex *in, fftw_complex *out,

MPI_Comm comm, int sign, unsigned flags);

fftw_plan fftw_mpi_plan_dft_2d(ptrdiff_t n0, ptrdiff_t n1,

fftw_complex *in, fftw_complex *out,

MPI_Comm comm, int sign, unsigned flags);

fftw_plan fftw_mpi_plan_dft_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,

fftw_complex *in, fftw_complex *out,

MPI_Comm comm, int sign, unsigned flags);

fftw_plan fftw_mpi_plan_dft(int rnk, const ptrdiff_t *n,

fftw_complex *in, fftw_complex *out,

MPI_Comm comm, int sign, unsigned flags);

fftw_plan fftw_mpi_plan_many_dft(int rnk, const ptrdiff_t *n,

ptrdiff_t howmany, ptrdiff_t block, ptrdiff_t tblock,

fftw_complex *in, fftw_complex *out,

MPI_Comm comm, int sign, unsigned flags);

Chapter 6: Distributed-memory FFTW with MPI 71

These are similar to their serial counterparts (see Section 4.3.1 [Complex DFTs], page 24)
in specifying the dimensions, sign, and flags of the transform. The comm argument gives an
MPI communicator that specifies the set of processes to participate in the transform; plan
creation is a collective function that must be called for all processes in the communicator.
The in and out pointers refer only to a portion of the overall transform data (see Section 6.4
[MPI Data Distribution], page 56) as specified by the ‘local_size’ functions in the previous
section. Unless flags contains FFTW_ESTIMATE, these arrays are overwritten during plan
creation as for the serial interface. For multi-dimensional transforms, any dimensions > 1

are supported; for one-dimensional transforms, only composite (non-prime) n0 are currently
supported (unlike the serial FFTW). Requesting an unsupported transform size will yield
a NULL plan. (As in the serial interface, highly composite sizes generally yield the best
performance.)

The advanced-interface fftw_mpi_plan_many_dft additionally allows you to specify the
block sizes for the first dimension (block) of the n0 × n1 × n2 × · · · × nd−1 input data and
the first dimension (tblock) of the n1×n0×n2×· · ·×nd−1 transposed data (at intermediate
steps of the transform, and for the output if FFTW_TRANSPOSED_OUT is specified in flags).
These must be the same block sizes as were passed to the corresponding ‘local_size’
function; you can pass FFTW_MPI_DEFAULT_BLOCK to use FFTW’s default block size as
in the basic interface. Also, the howmany parameter specifies that the transform is of
contiguous howmany-tuples rather than individual complex numbers; this corresponds to
the same parameter in the serial advanced interface (see Section 4.4.1 [Advanced Complex
DFTs], page 31) with stride = howmany and dist = 1.

MPI flags

The flags can be any of those for the serial FFTW (see Section 4.3.2 [Planner Flags],
page 25), and in addition may include one or more of the following MPI-specific flags,
which improve performance at the cost of changing the output or input data formats.

• FFTW_MPI_SCRAMBLED_OUT, FFTW_MPI_SCRAMBLED_IN: valid for 1d transforms only,
these flags indicate that the output/input of the transform are in an undocumented
“scrambled” order. A forward FFTW_MPI_SCRAMBLED_OUT transform can be inverted
by a backward FFTW_MPI_SCRAMBLED_IN (times the usual 1/N normalization). See
Section 6.4.4 [One-dimensional distributions], page 59.

• FFTW_MPI_TRANSPOSED_OUT, FFTW_MPI_TRANSPOSED_IN: valid for multidimensional
(rnk > 1) transforms only, these flags specify that the output or input of an
n0 × n1 × n2 × · · · × nd−1 transform is transposed to n1 × n0 × n2 × · · · × nd−1 . See
Section 6.4.3 [Transposed distributions], page 58.

Real-data MPI DFTs

Plans for real-input/output (r2c/c2r) DFTs (see Section 6.5 [Multi-dimensional MPI DFTs
of Real Data], page 60) are created by:

fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,

double *in, fftw_complex *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,

double *in, fftw_complex *out,

72 FFTW 3.3.4

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_r2c_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,

double *in, fftw_complex *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_r2c(int rnk, const ptrdiff_t *n,

double *in, fftw_complex *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,

fftw_complex *in, double *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,

fftw_complex *in, double *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_c2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,

fftw_complex *in, double *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_dft_c2r(int rnk, const ptrdiff_t *n,

fftw_complex *in, double *out,

MPI_Comm comm, unsigned flags);

Similar to the serial interface (see Section 4.3.3 [Real-data DFTs], page 27), these transform
logically n0×n1×n2×· · ·×nd−1 real data to/from n0×n1×n2×· · ·×(nd−1/2+1) complex
data, representing the non-redundant half of the conjugate-symmetry output of a real-input
DFT (see Section 4.8.6 [Multi-dimensional Transforms], page 46). However, the real array
must be stored within a padded n0 × n1 × n2 × · · · × [2(nd−1/2 + 1)] array (much like the
in-place serial r2c transforms, but here for out-of-place transforms as well). Currently, only
multi-dimensional (rnk > 1) r2c/c2r transforms are supported (requesting a plan for rnk =

1 will yield NULL). As explained above (see Section 6.5 [Multi-dimensional MPI DFTs of
Real Data], page 60), the data distribution of both the real and complex arrays is given
by the ‘local_size’ function called for the dimensions of the complex array. Similar to
the other planning functions, the input and output arrays are overwritten when the plan is
created except in FFTW_ESTIMATE mode.

As for the complex DFTs above, there is an advance interface that allows you to manually
specify block sizes and to transform contiguous howmany-tuples of real/complex numbers:

fftw_plan fftw_mpi_plan_many_dft_r2c

(int rnk, const ptrdiff_t *n, ptrdiff_t howmany,

ptrdiff_t iblock, ptrdiff_t oblock,

double *in, fftw_complex *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_many_dft_c2r

(int rnk, const ptrdiff_t *n, ptrdiff_t howmany,

ptrdiff_t iblock, ptrdiff_t oblock,

fftw_complex *in, double *out,

MPI_Comm comm, unsigned flags);

Chapter 6: Distributed-memory FFTW with MPI 73

MPI r2r transforms

There are corresponding plan-creation routines for r2r transforms (see Section 2.5 [More
DFTs of Real Data], page 10), currently supporting multidimensional (rnk > 1) transforms
only (rnk = 1 will yield a NULL plan):

fftw_plan fftw_mpi_plan_r2r_2d(ptrdiff_t n0, ptrdiff_t n1,

double *in, double *out,

MPI_Comm comm,

fftw_r2r_kind kind0, fftw_r2r_kind kind1,

unsigned flags);

fftw_plan fftw_mpi_plan_r2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,

double *in, double *out,

MPI_Comm comm,

fftw_r2r_kind kind0, fftw_r2r_kind kind1, fftw_r2r_kind kind2,

unsigned flags);

fftw_plan fftw_mpi_plan_r2r(int rnk, const ptrdiff_t *n,

double *in, double *out,

MPI_Comm comm, const fftw_r2r_kind *kind,

unsigned flags);

fftw_plan fftw_mpi_plan_many_r2r(int rnk, const ptrdiff_t *n,

ptrdiff_t iblock, ptrdiff_t oblock,

double *in, double *out,

MPI_Comm comm, const fftw_r2r_kind *kind,

unsigned flags);

The parameters are much the same as for the complex DFTs above, except that the ar-
rays are of real numbers (and hence the outputs of the ‘local_size’ data-distribution
functions should be interpreted as counts of real rather than complex numbers). Also,
the kind parameters specify the r2r kinds along each dimension as for the serial inter-
face (see Section 4.3.6 [Real-to-Real Transform Kinds], page 30). See Section 6.6 [Other
Multi-dimensional Real-data MPI Transforms], page 62.

MPI transposition

FFTW also provides routines to plan a transpose of a distributed n0 by n1 array of real
numbers, or an array of howmany-tuples of real numbers with specified block sizes (see
Section 6.7 [FFTW MPI Transposes], page 62):

fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1,

double *in, double *out,

MPI_Comm comm, unsigned flags);

fftw_plan fftw_mpi_plan_many_transpose

(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany,

ptrdiff_t block0, ptrdiff_t block1,

double *in, double *out, MPI_Comm comm, unsigned flags);

These plans are used with the fftw_mpi_execute_r2r new-array execute function (see 〈un-
defined〉 [Using MPI Plans], page 〈undefined〉), since they count as (rank zero) r2r plans
from FFTW’s perspective.

74 FFTW 3.3.4

6.12.6 MPI Wisdom Communication

To facilitate synchronizing wisdom among the different MPI processes, we provide two
functions:

void fftw_mpi_gather_wisdom(MPI_Comm comm);

void fftw_mpi_broadcast_wisdom(MPI_Comm comm);

The fftw_mpi_gather_wisdom function gathers all wisdom in the given communicator comm
to the process of rank 0 in the communicator: that process obtains the union of all wisdom
on all the processes. As a side effect, some other processes will gain additional wisdom from
other processes, but only process 0 will gain the complete union.

The fftw_mpi_broadcast_wisdom does the reverse: it exports wisdom from process 0 in
comm to all other processes in the communicator, replacing any wisdom they currently have.

See Section 6.8 [FFTW MPI Wisdom], page 64.

6.13 FFTW MPI Fortran Interface

The FFTW MPI interface is callable from modern Fortran compilers supporting the Fortran
2003 iso_c_binding standard for calling C functions. As described in Chapter 7 [Calling
FFTW from Modern Fortran], page 77, this means that you can directly call FFTW’s C
interface from Fortran with only minor changes in syntax. There are, however, a few things
specific to the MPI interface to keep in mind:

• Instead of including fftw3.f03 as in 〈undefined〉 [Overview of Fortran interface],
page 〈undefined〉, you should include ’fftw3-mpi.f03’ (after use, intrinsic ::

iso_c_binding as before). The fftw3-mpi.f03 file includes fftw3.f03, so you should
not include them both yourself. (You will also want to include the MPI header file,
usually via include ’mpif.h’ or similar, although though this is not needed by fftw3-

mpi.f03 per se.) (To use the ‘fftwl_’ long double extended-precision routines in sup-
porting compilers, you should include fftw3f-mpi.f03 in addition to fftw3-mpi.f03.
See Section 7.1.1 [Extended and quadruple precision in Fortran], page 78.)

• Because of the different storage conventions between C and Fortran, you reverse the
order of your array dimensions when passing them to FFTW (see Section 7.2 [Reversing
array dimensions], page 78). This is merely a difference in notation and incurs no
performance overhead. However, it means that, whereas in C the first dimension is
distributed, in Fortran the last dimension of your array is distributed.

• In Fortran, communicators are stored as integer types; there is no MPI_Comm type,
nor is there any way to access a C MPI_Comm. Fortunately, this is taken care of for you
by the FFTW Fortran interface: whenever the C interface expects an MPI_Comm type,
you should pass the Fortran communicator as an integer.2

• Because you need to call the ‘local_size’ function to find out how much space to
allocate, and this may be larger than the local portion of the array (see Section 6.4
[MPI Data Distribution], page 56), you should always allocate your arrays dynamically

2 Technically, this is because you aren’t actually calling the C functions directly. You are calling wrapper
functions that translate the communicator with MPI_Comm_f2c before calling the ordinary C interface. This
is all done transparently, however, since the fftw3-mpi.f03 interface file renames the wrappers so that they
are called in Fortran with the same names as the C interface functions.

Chapter 6: Distributed-memory FFTW with MPI 75

using FFTW’s allocation routines as described in Section 7.5 [Allocating aligned mem-
ory in Fortran], page 82. (Coincidentally, this also provides the best performance by
guaranteeding proper data alignment.)

• Because all sizes in the MPI FFTW interface are declared as ptrdiff_t in C, you
should use integer(C_INTPTR_T) in Fortran (see Section 7.3 [FFTW Fortran type
reference], page 80).

• In Fortran, because of the language semantics, we generally recommend using the
new-array execute functions for all plans, even in the common case where you are
executing the plan on the same arrays for which the plan was created (see Section 7.4
[Plan execution in Fortran], page 81). However, note that in the MPI interface these
functions are changed: fftw_execute_dft becomes fftw_mpi_execute_dft, etcetera.
See Section 6.12.3 [Using MPI Plans], page 68.

For example, here is a Fortran code snippet to perform a distributed L×M complex DFT
in-place. (This assumes you have already initialized MPI with MPI_init and have also
performed call fftw_mpi_init.)

use, intrinsic :: iso_c_binding

include ’fftw3-mpi.f03’

integer(C_INTPTR_T), parameter :: L = ...

integer(C_INTPTR_T), parameter :: M = ...

type(C_PTR) :: plan, cdata

complex(C_DOUBLE_COMPLEX), pointer :: data(:,:)

integer(C_INTPTR_T) :: i, j, alloc_local, local_M, local_j_offset

! get local data size and allocate (note dimension reversal)
alloc_local = fftw_mpi_local_size_2d(M, L, MPI_COMM_WORLD, &

local_M, local_j_offset)

cdata = fftw_alloc_complex(alloc_local)

call c_f_pointer(cdata, data, [L,local_M])

! create MPI plan for in-place forward DFT (note dimension reversal)
plan = fftw_mpi_plan_dft_2d(M, L, data, data, MPI_COMM_WORLD, &

FFTW_FORWARD, FFTW_MEASURE)

! initialize data to some function my_function(i,j)

do j = 1, local_M

do i = 1, L

data(i, j) = my_function(i, j + local_j_offset)

end do

end do

! compute transform (as many times as desired)
call fftw_mpi_execute_dft(plan, data, data)

call fftw_destroy_plan(plan)

call fftw_free(cdata)

76 FFTW 3.3.4

Note that when we called fftw_mpi_local_size_2d and fftw_mpi_plan_dft_2d with the
dimensions in reversed order, since a L ×M Fortran array is viewed by FFTW in C as a
M × L array. This means that the array was distributed over the M dimension, the local
portion of which is a L×localM array in Fortran. (You must not use an allocate statement
to allocate an L×localM array, however; you must allocate alloc_local complex numbers,
which may be greater than L * local_M, in order to reserve space for intermediate steps
of the transform.) Finally, we mention that because C’s array indices are zero-based, the
local_j_offset argument can conveniently be interpreted as an offset in the 1-based j

index (rather than as a starting index as in C).

If instead you had used the ior(FFTW_MEASURE, FFTW_MPI_TRANSPOSED_OUT) flag, the out-
put of the transform would be a transposed M × localL array, associated with the same
cdata allocation (since the transform is in-place), and which you could declare with:

complex(C_DOUBLE_COMPLEX), pointer :: tdata(:,:)

...

call c_f_pointer(cdata, tdata, [M,local_L])

where local_L would have been obtained by changing the fftw_mpi_local_size_2d call
to:

alloc_local = fftw_mpi_local_size_2d_transposed(M, L, MPI_COMM_WORLD, &

local_M, local_j_offset, local_L, local_i_offset)

Chapter 7: Calling FFTW from Modern Fortran 77

7 Calling FFTW from Modern Fortran

Fortran 2003 standardized ways for Fortran code to call C libraries, and this allows us to
support a direct translation of the FFTW C API into Fortran. Compared to the legacy
Fortran 77 interface (see Chapter 8 [Calling FFTW from Legacy Fortran], page 87), this
direct interface offers many advantages, especially compile-time type-checking and aligned
memory allocation. As of this writing, support for these C interoperability features seems
widespread, having been implemented in nearly all major Fortran compilers (e.g. GNU,
Intel, IBM, Oracle/Solaris, Portland Group, NAG).

This chapter documents that interface. For the most part, since this interface allows Fortran
to call the C interface directly, the usage is identical to C translated to Fortran syntax.
However, there are a few subtle points such as memory allocation, wisdom, and data types
that deserve closer attention.

7.1 Overview of Fortran interface

FFTW provides a file fftw3.f03 that defines Fortran 2003 interfaces for all of its C routines,
except for the MPI routines described elsewhere, which can be found in the same directory
as fftw3.h (the C header file). In any Fortran subroutine where you want to use FFTW
functions, you should begin with:

use, intrinsic :: iso_c_binding

include ’fftw3.f03’

This includes the interface definitions and the standard iso_c_binding module (which
defines the equivalents of C types). You can also put the FFTW functions into a module if
you prefer (see Section 7.7 [Defining an FFTW module], page 85).

At this point, you can now call anything in the FFTW C interface directly, almost exactly
as in C other than minor changes in syntax. For example:

type(C_PTR) :: plan

complex(C_DOUBLE_COMPLEX), dimension(1024,1000) :: in, out

plan = fftw_plan_dft_2d(1000,1024, in,out, FFTW_FORWARD,FFTW_ESTIMATE)

...

call fftw_execute_dft(plan, in, out)

...

call fftw_destroy_plan(plan)

A few important things to keep in mind are:

• FFTW plans are type(C_PTR). Other C types are mapped in the obvious way via
the iso_c_binding standard: int turns into integer(C_INT), fftw_complex turns
into complex(C_DOUBLE_COMPLEX), double turns into real(C_DOUBLE), and so on. See
Section 7.3 [FFTW Fortran type reference], page 80.

• Functions in C become functions in Fortran if they have a return value, and subroutines
in Fortran otherwise.

• The ordering of the Fortran array dimensions must be reversed when they are passed
to the FFTW plan creation, thanks to differences in array indexing conventions (see

78 FFTW 3.3.4

Section 3.2 [Multi-dimensional Array Format], page 15). This is unlike the legacy
Fortran interface (see Section 8.1 [Fortran-interface routines], page 87), which reversed
the dimensions for you. See Section 7.2 [Reversing array dimensions], page 78.

• Using ordinary Fortran array declarations like this works, but may yield suboptimal
performance because the data may not be not aligned to exploit SIMD instructions on
modern proessors (see Section 3.1 [SIMD alignment and fftw malloc], page 15). Better
performance will often be obtained by allocating with ‘fftw_alloc’. See Section 7.5
[Allocating aligned memory in Fortran], page 82.

• Similar to the legacy Fortran interface (see Section 8.3 [FFTW Execution in Fortran],
page 88), we currently recommend not using fftw_execute but rather using the more
specialized functions like fftw_execute_dft (see Section 4.6 [New-array Execute Func-
tions], page 38). However, you should execute the plan on the same arrays as the ones
for which you created the plan, unless you are especially careful. See Section 7.4 [Plan
execution in Fortran], page 81. To prevent you from using fftw_execute by mistake,
the fftw3.f03 file does not provide an fftw_execute interface declaration.

• Multiple planner flags are combined with ior (equivalent to ‘|’ in C). e.g.
FFTW_MEASURE | FFTW_DESTROY_INPUT becomes ior(FFTW_MEASURE, FFTW_DESTROY_

INPUT). (You can also use ‘+’ as long as you don’t try to include a given flag more
than once.)

7.1.1 Extended and quadruple precision in Fortran

If FFTW is compiled in long double (extended) precision (see Chapter 10 [Installation
and Customization], page 97), you may be able to call the resulting fftwl_ routines (see
Section 4.1.2 [Precision], page 21) from Fortran if your compiler supports the C_LONG_

DOUBLE_COMPLEX type code.

Because some Fortran compilers do not support C_LONG_DOUBLE_COMPLEX, the fftwl_ dec-
larations are segregated into a separate interface file fftw3l.f03, which you should include
in addition to fftw3.f03 (which declares precision-independent ‘FFTW_’ constants):

use, intrinsic :: iso_c_binding

include ’fftw3.f03’

include ’fftw3l.f03’

We also support using the nonstandard __float128 quadruple-precision type provided by
recent versions of gcc on 32- and 64-bit x86 hardware (see Chapter 10 [Installation and
Customization], page 97), using the corresponding real(16) and complex(16) types sup-
ported by gfortran. The quadruple-precision ‘fftwq_’ functions (see Section 4.1.2 [Pre-
cision], page 21) are declared in a fftw3q.f03 interface file, which should be included in
addition to fftw3l.f03, as above. You should also link with -lfftw3q -lquadmath -lm as
in C.

7.2 Reversing array dimensions

A minor annoyance in calling FFTW from Fortran is that FFTW’s array dimensions are
defined in the C convention (row-major order), while Fortran’s array dimensions are the op-
posite convention (column-major order). See Section 3.2 [Multi-dimensional Array Format],
page 15. This is just a bookkeeping difference, with no effect on performance. The only

Chapter 7: Calling FFTW from Modern Fortran 79

consequence of this is that, whenever you create an FFTW plan for a multi-dimensional
transform, you must always reverse the ordering of the dimensions.

For example, consider the three-dimensional (L×M ×N) arrays:

complex(C_DOUBLE_COMPLEX), dimension(L,M,N) :: in, out

To plan a DFT for these arrays using fftw_plan_dft_3d, you could do:

plan = fftw_plan_dft_3d(N,M,L, in,out, FFTW_FORWARD,FFTW_ESTIMATE)

That is, from FFTW’s perspective this is a N ×M × L array. No data transposition need
occur, as this is only notation. Similarly, to use the more generic routine fftw_plan_dft

with the same arrays, you could do:

integer(C_INT), dimension(3) :: n = [N,M,L]

plan = fftw_plan_dft_3d(3, n, in,out, FFTW_FORWARD,FFTW_ESTIMATE)

Note, by the way, that this is different from the legacy Fortran interface (see Section 8.1
[Fortran-interface routines], page 87), which automatically reverses the order of the array
dimension for you. Here, you are calling the C interface directly, so there is no “translation”
layer.

An important thing to keep in mind is the implication of this for multidimensional real-
to-complex transforms (see Section 2.4 [Multi-Dimensional DFTs of Real Data], page 7).
In C, a multidimensional real-to-complex DFT chops the last dimension roughly in half
(N ×M ×L real input goes to N ×M ×L/2+1 complex output). In Fortran, because the
array dimension notation is reversed, the first dimension of the complex data is chopped
roughly in half. For example consider the ‘r2c’ transform of L ×M × N real input in
Fortran:

type(C_PTR) :: plan

real(C_DOUBLE), dimension(L,M,N) :: in

complex(C_DOUBLE_COMPLEX), dimension(L/2+1,M,N) :: out

plan = fftw_plan_dft_r2c_3d(N,M,L, in,out, FFTW_ESTIMATE)

...

call fftw_execute_dft_r2c(plan, in, out)

Alternatively, for an in-place r2c transform, as described in the C documentation we must
pad the first dimension of the real input with an extra two entries (which are ignored by
FFTW) so as to leave enough space for the complex output. The input is allocated as a
2[L/2 + 1] ×M × N array, even though only L ×M × N of it is actually used. In this
example, we will allocate the array as a pointer type, using ‘fftw_alloc’ to ensure aligned
memory for maximum performance (see Section 7.5 [Allocating aligned memory in Fortran],
page 82); this also makes it easy to reference the same memory as both a real array and a
complex array.

real(C_DOUBLE), pointer :: in(:,:,:)

complex(C_DOUBLE_COMPLEX), pointer :: out(:,:,:)

type(C_PTR) :: plan, data

data = fftw_alloc_complex(int((L/2+1) * M * N, C_SIZE_T))

call c_f_pointer(data, in, [2*(L/2+1),M,N])

call c_f_pointer(data, out, [L/2+1,M,N])

80 FFTW 3.3.4

plan = fftw_plan_dft_r2c_3d(N,M,L, in,out, FFTW_ESTIMATE)

...

call fftw_execute_dft_r2c(plan, in, out)

...

call fftw_destroy_plan(plan)

call fftw_free(data)

7.3 FFTW Fortran type reference

The following are the most important type correspondences between the C interface and
Fortran:

• Plans (fftw_plan and variants) are type(C_PTR) (i.e. an opaque pointer).

• The C floating-point types double, float, and long double correspond to
real(C_DOUBLE), real(C_FLOAT), and real(C_LONG_DOUBLE), respectively. The
C complex types fftw_complex, fftwf_complex, and fftwl_complex correspond
in Fortran to complex(C_DOUBLE_COMPLEX), complex(C_FLOAT_COMPLEX), and
complex(C_LONG_DOUBLE_COMPLEX), respectively. Just as in C (see Section 4.1.2
[Precision], page 21), the FFTW subroutines and types are prefixed with ‘fftw_’,
fftwf_, and fftwl_ for the different precisions, and link to different libraries
(-lfftw3, -lfftw3f, and -lfftw3l on Unix), but use the same include file fftw3.f03
and the same constants (all of which begin with ‘FFTW_’). The exception is long

double precision, for which you should also include fftw3l.f03 (see Section 7.1.1
[Extended and quadruple precision in Fortran], page 78).

• The C integer types int and unsigned (used for planner flags) become integer(C_

INT). The C integer type ptrdiff_t (e.g. in the Section 4.5.6 [64-bit Guru Interface],
page 38) becomes integer(C_INTPTR_T), and size_t (in fftw_malloc etc.) becomes
integer(C_SIZE_T).

• The fftw_r2r_kind type (see Section 4.3.6 [Real-to-Real Transform Kinds], page 30)
becomes integer(C_FFTW_R2R_KIND). The various constant values of the C enumer-
ated type (FFTW_R2HC etc.) become simply integer constants of the same names in
Fortran.

• Numeric array pointer arguments (e.g. double *) become dimension(*),

intent(out) arrays of the same type, or dimension(*), intent(in) if they are
pointers to constant data (e.g. const int *). There are a few exceptions where
numeric pointers refer to scalar outputs (e.g. for fftw_flops), in which case they are
intent(out) scalar arguments in Fortran too. For the new-array execute functions
(see Section 4.6 [New-array Execute Functions], page 38), the input arrays are
declared dimension(*), intent(inout), since they can be modified in the case of
in-place or FFTW_DESTROY_INPUT transforms.

• Pointer return values (e.g double *) become type(C_PTR). (If they are pointers to
arrays, as for fftw_alloc_real, you can convert them back to Fortran array pointers
with the standard intrinsic function c_f_pointer.)

• The fftw_iodim type in the guru interface (see Section 4.5.2 [Guru vector and trans-
form sizes], page 34) becomes type(fftw_iodim) in Fortran, a derived data type (the
Fortran analogue of C’s struct) with three integer(C_INT) components: n, is, and

Chapter 7: Calling FFTW from Modern Fortran 81

os, with the same meanings as in C. The fftw_iodim64 type in the 64-bit guru in-
terface (see Section 4.5.6 [64-bit Guru Interface], page 38) is the same, except that its
components are of type integer(C_INTPTR_T).

• Using the wisdom import/export functions from Fortran is a bit tricky, and is dis-
cussed in Section 7.6 [Accessing the wisdom API from Fortran], page 83. In brief,
the FILE * arguments map to type(C_PTR), const char * to character(C_CHAR),

dimension(*), intent(in) (null-terminated!), and the generic read-char/write-char
functions map to type(C_FUNPTR).

You may be wondering if you need to search-and-replace real(kind(0.0d0)) (or whatever
your favorite Fortran spelling of “double precision” is) with real(C_DOUBLE) everywhere
in your program, and similarly for complex and integer types. The answer is no; you can
still use your existing types. As long as these types match their C counterparts, things
should work without a hitch. The worst that can happen, e.g. in the (unlikely) event of a
system where real(kind(0.0d0)) is different from real(C_DOUBLE), is that the compiler
will give you a type-mismatch error. That is, if you don’t use the iso_c_binding kinds you
need to accept at least the theoretical possibility of having to change your code in response
to compiler errors on some future machine, but you don’t need to worry about silently
compiling incorrect code that yields runtime errors.

7.4 Plan execution in Fortran

In C, in order to use a plan, one normally calls fftw_execute, which executes the plan to
perform the transform on the input/output arrays passed when the plan was created (see
Section 4.2 [Using Plans], page 22). The corresponding subroutine call in modern Fortran
is:

call fftw_execute(plan)

However, we have had reports that this causes problems with some recent optimizing Fortran
compilers. The problem is, because the input/output arrays are not passed as explicit
arguments to fftw_execute, the semantics of Fortran (unlike C) allow the compiler to
assume that the input/output arrays are not changed by fftw_execute. As a consequence,
certain compilers end up repositioning the call to fftw_execute, assuming incorrectly that
it does nothing to the arrays.

There are various workarounds to this, but the safest and simplest thing is to not use
fftw_execute in Fortran. Instead, use the functions described in Section 4.6 [New-array
Execute Functions], page 38, which take the input/output arrays as explicit arguments. For
example, if the plan is for a complex-data DFT and was created for the arrays in and out,
you would do:

call fftw_execute_dft(plan, in, out)

There are a few things to be careful of, however:

• You must use the correct type of execute function, matching the way the plan was
created. Complex DFT plans should use fftw_execute_dft, Real-input (r2c) DFT
plans should use use fftw_execute_dft_r2c, and real-output (c2r) DFT plans should
use fftw_execute_dft_c2r. The various r2r plans should use fftw_execute_r2r.

82 FFTW 3.3.4

Fortunately, if you use the wrong one you will get a compile-time type-mismatch error
(unlike legacy Fortran).

• You should normally pass the same input/output arrays that were used when creating
the plan. This is always safe.

• If you pass different input/output arrays compared to those used when creating the
plan, you must abide by all the restrictions of the new-array execute functions (see
Section 4.6 [New-array Execute Functions], page 38). The most tricky of these is the
requirement that the new arrays have the same alignment as the original arrays; the
best (and possibly only) way to guarantee this is to use the ‘fftw_alloc’ functions to
allocate your arrays (see Section 7.5 [Allocating aligned memory in Fortran], page 82).
Alternatively, you can use the FFTW_UNALIGNED flag when creating the plan, in which
case the plan does not depend on the alignment, but this may sacrifice substantial
performance on architectures (like x86) with SIMD instructions (see Section 3.1 [SIMD
alignment and fftw malloc], page 15).

7.5 Allocating aligned memory in Fortran

In order to obtain maximum performance in FFTW, you should store your data in ar-
rays that have been specially aligned in memory (see Section 3.1 [SIMD alignment and
fftw malloc], page 15). Enforcing alignment also permits you to safely use the new-array
execute functions (see Section 4.6 [New-array Execute Functions], page 38) to apply a given
plan to more than one pair of in/out arrays. Unfortunately, standard Fortran arrays do
not provide any alignment guarantees. The only way to allocate aligned memory in stan-
dard Fortran is to allocate it with an external C function, like the fftw_alloc_real and
fftw_alloc_complex functions. Fortunately, Fortran 2003 provides a simple way to asso-
ciate such allocated memory with a standard Fortran array pointer that you can then use
normally.

We therefore recommend allocating all your input/output arrays using the following tech-
nique:

1. Declare a pointer, arr, to your array of the desired type and dimensions. For exam-
ple, real(C_DOUBLE), pointer :: a(:,:) for a 2d real array, or complex(C_DOUBLE_
COMPLEX), pointer :: a(:,:,:) for a 3d complex array.

2. The number of elements to allocate must be an integer(C_SIZE_T). You can either
declare a variable of this type, e.g. integer(C_SIZE_T) :: sz, to store the number of
elements to allocate, or you can use the int(..., C_SIZE_T) intrinsic function. e.g.
set sz = L * M * N or use int(L * M * N, C_SIZE_T) for an L×M ×N array.

3. Declare a type(C_PTR) :: p to hold the return value from FFTW’s allocation routine.
Set p = fftw_alloc_real(sz) for a real array, or p = fftw_alloc_complex(sz) for a
complex array.

4. Associate your pointer arr with the allocated memory p using the standard
c_f_pointer subroutine: call c_f_pointer(p, arr, [...dimensions...]), where
[...dimensions...]) are an array of the dimensions of the array (in the usual
Fortran order). e.g. call c_f_pointer(p, arr, [L,M,N]) for an L ×M ×N array.
(Alternatively, you can omit the dimensions argument if you specified the shape
explicitly when declaring arr.) You can now use arr as a usual multidimensional
array.

Chapter 7: Calling FFTW from Modern Fortran 83

5. When you are done using the array, deallocate the memory by call fftw_free(p) on
p.

For example, here is how we would allocate an L×M 2d real array:

real(C_DOUBLE), pointer :: arr(:,:)

type(C_PTR) :: p

p = fftw_alloc_real(int(L * M, C_SIZE_T))

call c_f_pointer(p, arr, [L,M])

...use arr and arr(i,j) as usual...

call fftw_free(p)

and here is an L×M ×N 3d complex array:

complex(C_DOUBLE_COMPLEX), pointer :: arr(:,:,:)

type(C_PTR) :: p

p = fftw_alloc_complex(int(L * M * N, C_SIZE_T))

call c_f_pointer(p, arr, [L,M,N])

...use arr and arr(i,j,k) as usual...

call fftw_free(p)

See Section 7.2 [Reversing array dimensions], page 78 for an example allocating a single array
and associating both real and complex array pointers with it, for in-place real-to-complex
transforms.

7.6 Accessing the wisdom API from Fortran

As explained in Section 3.3 [Words of Wisdom-Saving Plans], page 18, FFTW provides a
“wisdom” API for saving plans to disk so that they can be recreated quickly. The C API
for exporting (see Section 4.7.1 [Wisdom Export], page 40) and importing (see Section 4.7.2
[Wisdom Import], page 41) wisdom is somewhat tricky to use from Fortran, however, be-
cause of differences in file I/O and string types between C and Fortran.

7.6.1 Wisdom File Export/Import from Fortran

The easiest way to export and import wisdom is to do so using fftw_export_wisdom_

to_filename and fftw_wisdom_from_filename. The only trick is that these require you
to pass a C string, which is an array of type CHARACTER(C_CHAR) that is terminated by
C_NULL_CHAR. You can call them like this:

integer(C_INT) :: ret

ret = fftw_export_wisdom_to_filename(C_CHAR_’my_wisdom.dat’ // C_NULL_CHAR)

if (ret .eq. 0) stop ’error exporting wisdom to file’

ret = fftw_import_wisdom_from_filename(C_CHAR_’my_wisdom.dat’ // C_NULL_CHAR)

if (ret .eq. 0) stop ’error importing wisdom from file’

Note that prepending ‘C_CHAR_’ is needed to specify that the literal string is of kind C_CHAR,
and we null-terminate the string by appending ‘// C_NULL_CHAR’. These functions return
an integer(C_INT) (ret) which is 0 if an error occurred during export/import and nonzero
otherwise.

It is also possible to use the lower-level routines fftw_export_wisdom_to_file and fftw_

import_wisdom_from_file, which accept parameters of the C type FILE*, expressed in

84 FFTW 3.3.4

Fortran as type(C_PTR). However, you are then responsible for creating the FILE* yourself.
You can do this by using iso_c_binding to define Fortran intefaces for the C library
functions fopen and fclose, which is a bit strange in Fortran but workable.

7.6.2 Wisdom String Export/Import from Fortran

Dealing with FFTW’s C string export/import is a bit more painful. In particular, the fftw_
export_wisdom_to_string function requires you to deal with a dynamically allocated C
string. To get its length, you must define an interface to the C strlen function, and to
deallocate it you must define an interface to C free:

use, intrinsic :: iso_c_binding

interface

integer(C_INT) function strlen(s) bind(C, name=’strlen’)

import

type(C_PTR), value :: s

end function strlen

subroutine free(p) bind(C, name=’free’)

import

type(C_PTR), value :: p

end subroutine free

end interface

Given these definitions, you can then export wisdom to a Fortran character array:

character(C_CHAR), pointer :: s(:)

integer(C_SIZE_T) :: slen

type(C_PTR) :: p

p = fftw_export_wisdom_to_string()

if (.not. c_associated(p)) stop ’error exporting wisdom’

slen = strlen(p)

call c_f_pointer(p, s, [slen+1])

...

call free(p)

Note that slen is the length of the C string, but the length of the array is slen+1 because
it includes the terminating null character. (You can omit the ‘+1’ if you don’t want Fortran
to know about the null character.) The standard c_associated function checks whether
p is a null pointer, which is returned by fftw_export_wisdom_to_string if there was an
error.

To import wisdom from a string, use fftw_import_wisdom_from_string as usual; note
that the argument of this function must be a character(C_CHAR) that is terminated by
the C_NULL_CHAR character, like the s array above.

7.6.3 Wisdom Generic Export/Import from Fortran

The most generic wisdom export/import functions allow you to provide an arbitrary callback
function to read/write one character at a time in any way you want. However, your callback
function must be written in a special way, using the bind(C) attribute to be passed to a C
interface.

Chapter 7: Calling FFTW from Modern Fortran 85

In particular, to call the generic wisdom export function fftw_export_wisdom, you would
write a callback subroutine of the form:

subroutine my_write_char(c, p) bind(C)

use, intrinsic :: iso_c_binding

character(C_CHAR), value :: c

type(C_PTR), value :: p

...write c...

end subroutine my_write_char

Given such a subroutine (along with the corresponding interface definition), you could then
export wisdom using:

call fftw_export_wisdom(c_funloc(my_write_char), p)

The standard c_funloc intrinsic converts a Fortran bind(C) subroutine into a C function
pointer. The parameter p is a type(C_PTR) to any arbitrary data that you want to pass
to my_write_char (or C_NULL_PTR if none). (Note that you can get a C pointer to Fortran
data using the intrinsic c_loc, and convert it back to a Fortran pointer in my_write_char

using c_f_pointer.)

Similarly, to use the generic fftw_import_wisdom, you would define a callback function of
the form:

integer(C_INT) function my_read_char(p) bind(C)

use, intrinsic :: iso_c_binding

type(C_PTR), value :: p

character :: c

...read a character c...

my_read_char = ichar(c, C_INT)

end function my_read_char

....

integer(C_INT) :: ret

ret = fftw_import_wisdom(c_funloc(my_read_char), p)

if (ret .eq. 0) stop ’error importing wisdom’

Your function can return -1 if the end of the input is reached. Again, p is an arbitrary
type(C_PTR that is passed through to your function. fftw_import_wisdom returns 0 if an
error occurred and nonzero otherwise.

7.7 Defining an FFTW module

Rather than using the include statement to include the fftw3.f03 interface file in any
subroutine where you want to use FFTW, you might prefer to define an FFTW Fortran
module. FFTW does not install itself as a module, primarily because fftw3.f03 can be
shared between different Fortran compilers while modules (in general) cannot. However, it
is trivial to define your own FFTW module if you want. Just create a file containing:

module FFTW3

use, intrinsic :: iso_c_binding

86 FFTW 3.3.4

include ’fftw3.f03’

end module

Compile this file into a module as usual for your compiler (e.g. with gfortran -c you will
get a file fftw3.mod). Now, instead of include ’fftw3.f03’, whenever you want to use
FFTW routines you can just do:

use FFTW3

as usual for Fortran modules. (You still need to link to the FFTW library, of course.)

Chapter 8: Calling FFTW from Legacy Fortran 87

8 Calling FFTW from Legacy Fortran

This chapter describes the interface to FFTW callable by Fortran code in older compilers
not supporting the Fortran 2003 C interoperability features (see Chapter 7 [Calling FFTW
from Modern Fortran], page 77). This interface has the major disadvantage that it is not
type-checked, so if you mistake the argument types or ordering then your program will
not have any compiler errors, and will likely crash at runtime. So, greater care is needed.
Also, technically interfacing older Fortran versions to C is nonstandard, but in practice we
have found that the techniques used in this chapter have worked with all known Fortran
compilers for many years.

The legacy Fortran interface differs from the C interface only in the prefix (‘dfftw_’ instead
of ‘fftw_’ in double precision) and a few other minor details. This Fortran interface is
included in the FFTW libraries by default, unless a Fortran compiler isn’t found on your
system or --disable-fortran is included in the configure flags. We assume here that
the reader is already familiar with the usage of FFTW in C, as described elsewhere in this
manual.

The MPI parallel interface to FFTW is not currently available to legacy Fortran.

8.1 Fortran-interface routines

Nearly all of the FFTW functions have Fortran-callable equivalents. The name of the legacy
Fortran routine is the same as that of the corresponding C routine, but with the ‘fftw_’
prefix replaced by ‘dfftw_’.1 The single and long-double precision versions use ‘sfftw_’
and ‘lfftw_’, respectively, instead of ‘fftwf_’ and ‘fftwl_’; quadruple precision (real*16)
is available on some systems as ‘fftwq_’ (see Section 4.1.2 [Precision], page 21). (Note that
long double on x86 hardware is usually at most 80-bit extended precision, not quadruple
precision.)

For the most part, all of the arguments to the functions are the same, with the following
exceptions:

• plan variables (what would be of type fftw_plan in C), must be declared as a type
that is at least as big as a pointer (address) on your machine. We recommend using
integer*8 everywhere, since this should always be big enough.

• Any function that returns a value (e.g. fftw_plan_dft) is converted into a subroutine.
The return value is converted into an additional first parameter of this subroutine.2

• The Fortran routines expect multi-dimensional arrays to be in column-major order,
which is the ordinary format of Fortran arrays (see Section 3.2 [Multi-dimensional
Array Format], page 15). They do this transparently and costlessly simply by reversing
the order of the dimensions passed to FFTW, but this has one important consequence
for multi-dimensional real-complex transforms, discussed below.

• Wisdom import and export is somewhat more tricky because one cannot easily pass
files or strings between C and Fortran; see Section 8.5 [Wisdom of Fortran?], page 91.

1 Technically, Fortran 77 identifiers are not allowed to have more than 6 characters, nor may they contain
underscores. Any compiler that enforces this limitation doesn’t deserve to link to FFTW.

2 The reason for this is that some Fortran implementations seem to have trouble with C function return values,
and vice versa.

88 FFTW 3.3.4

• Legacy Fortran cannot use the fftw_malloc dynamic-allocation routine. If you want to
exploit the SIMD FFTW (see Section 3.1 [SIMD alignment and fftw malloc], page 15),
you’ll need to figure out some other way to ensure that your arrays are at least 16-byte
aligned.

• Since Fortran 77 does not have data structures, the fftw_iodim structure from the
guru interface (see Section 4.5.2 [Guru vector and transform sizes], page 34) must be
split into separate arguments. In particular, any fftw_iodim array arguments in the C
guru interface become three integer array arguments (n, is, and os) in the Fortran guru
interface, all of whose lengths should be equal to the corresponding rank argument.

• The guru planner interface in Fortran does not do any automatic translation between
column-major and row-major; you are responsible for setting the strides etcetera to
correspond to your Fortran arrays. However, as a slight bug that we are preserving for
backwards compatibility, the ‘plan_guru_r2r’ in Fortran does reverse the order of its
kind array parameter, so the kind array of that routine should be in the reverse of the
order of the iodim arrays (see above).

In general, you should take care to use Fortran data types that correspond to (i.e. are
the same size as) the C types used by FFTW. In practice, this correspondence is usually
straightforward (i.e. integer corresponds to int, real corresponds to float, etcetera).
The native Fortran double/single-precision complex type should be compatible with fftw_

complex/fftwf_complex. Such simple correspondences are assumed in the examples below.

8.2 FFTW Constants in Fortran

When creating plans in FFTW, a number of constants are used to specify options, such as
FFTW_MEASURE or FFTW_ESTIMATE. The same constants must be used with the wrapper rou-
tines, but of course the C header files where the constants are defined can’t be incorporated
directly into Fortran code.

Instead, we have placed Fortran equivalents of the FFTW constant definitions in the file
fftw3.f, which can be found in the same directory as fftw3.h. If your Fortran compiler
supports a preprocessor of some sort, you should be able to include or #include this file;
otherwise, you can paste it directly into your code.

In C, you combine different flags (like FFTW_PRESERVE_INPUT and FFTW_MEASURE) using the
‘|’ operator; in Fortran you should just use ‘+’. (Take care not to add in the same flag more
than once, though. Alternatively, you can use the ior intrinsic function standardized in
Fortran 95.)

8.3 FFTW Execution in Fortran

In C, in order to use a plan, one normally calls fftw_execute, which executes the plan to
perform the transform on the input/output arrays passed when the plan was created (see
Section 4.2 [Using Plans], page 22). The corresponding subroutine call in legacy Fortran is:

call dfftw_execute(plan)

However, we have had reports that this causes problems with some recent optimizing For-
tran compilers. The problem is, because the input/output arrays are not passed as explicit

Chapter 8: Calling FFTW from Legacy Fortran 89

arguments to dfftw_execute, the semantics of Fortran (unlike C) allow the compiler to as-
sume that the input/output arrays are not changed by dfftw_execute. As a consequence,
certain compilers end up optimizing out or repositioning the call to dfftw_execute, assum-
ing incorrectly that it does nothing.

There are various workarounds to this, but the safest and simplest thing is to not use
dfftw_execute in Fortran. Instead, use the functions described in Section 4.6 [New-array
Execute Functions], page 38, which take the input/output arrays as explicit arguments. For
example, if the plan is for a complex-data DFT and was created for the arrays in and out,
you would do:

call dfftw_execute_dft(plan, in, out)

There are a few things to be careful of, however:

• You must use the correct type of execute function, matching the way the plan was
created. Complex DFT plans should use dfftw_execute_dft, Real-input (r2c) DFT
plans should use use dfftw_execute_dft_r2c, and real-output (c2r) DFT plans should
use dfftw_execute_dft_c2r. The various r2r plans should use dfftw_execute_r2r.

• You should normally pass the same input/output arrays that were used when creating
the plan. This is always safe.

• If you pass different input/output arrays compared to those used when creating the
plan, you must abide by all the restrictions of the new-array execute functions (see
Section 4.6 [New-array Execute Functions], page 38). The most difficult of these, in
Fortran, is the requirement that the new arrays have the same alignment as the original
arrays, because there seems to be no way in legacy Fortran to obtain guaranteed-aligned
arrays (analogous to fftw_malloc in C). You can, of course, use the FFTW_UNALIGNED
flag when creating the plan, in which case the plan does not depend on the alignment,
but this may sacrifice substantial performance on architectures (like x86) with SIMD
instructions (see Section 3.1 [SIMD alignment and fftw malloc], page 15).

8.4 Fortran Examples

In C, you might have something like the following to transform a one-dimensional complex
array:

fftw_complex in[N], out[N];

fftw_plan plan;

plan = fftw_plan_dft_1d(N,in,out,FFTW_FORWARD,FFTW_ESTIMATE);

fftw_execute(plan);

fftw_destroy_plan(plan);

In Fortran, you would use the following to accomplish the same thing:

double complex in, out

dimension in(N), out(N)

integer*8 plan

call dfftw_plan_dft_1d(plan,N,in,out,FFTW_FORWARD,FFTW_ESTIMATE)

call dfftw_execute_dft(plan, in, out)

90 FFTW 3.3.4

call dfftw_destroy_plan(plan)

Notice how all routines are called as Fortran subroutines, and the plan is returned via
the first argument to dfftw_plan_dft_1d. Notice also that we changed fftw_execute to
dfftw_execute_dft (see Section 8.3 [FFTW Execution in Fortran], page 88). To do the
same thing, but using 8 threads in parallel (see Chapter 5 [Multi-threaded FFTW], page 49),
you would simply prefix these calls with:

integer iret

call dfftw_init_threads(iret)

call dfftw_plan_with_nthreads(8)

(You might want to check the value of iret: if it is zero, it indicates an unlikely error
during thread initialization.)

To transform a three-dimensional array in-place with C, you might do:

fftw_complex arr[L][M][N];

fftw_plan plan;

plan = fftw_plan_dft_3d(L,M,N, arr,arr,

FFTW_FORWARD, FFTW_ESTIMATE);

fftw_execute(plan);

fftw_destroy_plan(plan);

In Fortran, you would use this instead:

double complex arr

dimension arr(L,M,N)

integer*8 plan

call dfftw_plan_dft_3d(plan, L,M,N, arr,arr,

& FFTW_FORWARD, FFTW_ESTIMATE)

call dfftw_execute_dft(plan, arr, arr)

call dfftw_destroy_plan(plan)

Note that we pass the array dimensions in the “natural” order in both C and Fortran.

To transform a one-dimensional real array in Fortran, you might do:

double precision in

dimension in(N)

double complex out

dimension out(N/2 + 1)

integer*8 plan

call dfftw_plan_dft_r2c_1d(plan,N,in,out,FFTW_ESTIMATE)

call dfftw_execute_dft_r2c(plan, in, out)

call dfftw_destroy_plan(plan)

To transform a two-dimensional real array, out of place, you might use the following:

double precision in

dimension in(M,N)

Chapter 8: Calling FFTW from Legacy Fortran 91

double complex out

dimension out(M/2 + 1, N)

integer*8 plan

call dfftw_plan_dft_r2c_2d(plan,M,N,in,out,FFTW_ESTIMATE)

call dfftw_execute_dft_r2c(plan, in, out)

call dfftw_destroy_plan(plan)

Important: Notice that it is the first dimension of the complex output array that is cut
in half in Fortran, rather than the last dimension as in C. This is a consequence of the
interface routines reversing the order of the array dimensions passed to FFTW so that the
Fortran program can use its ordinary column-major order.

8.5 Wisdom of Fortran?

In this section, we discuss how one can import/export FFTW wisdom (saved plans) to/from
a Fortran program; we assume that the reader is already familiar with wisdom, as described
in Section 3.3 [Words of Wisdom-Saving Plans], page 18.

The basic problem is that is difficult to (portably) pass files and strings between Fortran
and C, so we cannot provide a direct Fortran equivalent to the fftw_export_wisdom_

to_file, etcetera, functions. Fortran interfaces are provided for the functions that do
not take file/string arguments, however: dfftw_import_system_wisdom, dfftw_import_
wisdom, dfftw_export_wisdom, and dfftw_forget_wisdom.

So, for example, to import the system-wide wisdom, you would do:

integer isuccess

call dfftw_import_system_wisdom(isuccess)

As usual, the C return value is turned into a first parameter; isuccess is non-zero on
success and zero on failure (e.g. if there is no system wisdom installed).

If you want to import/export wisdom from/to an arbitrary file or elsewhere, you can em-
ploy the generic dfftw_import_wisdom and dfftw_export_wisdom functions, for which you
must supply a subroutine to read/write one character at a time. The FFTW package con-
tains an example file doc/f77_wisdom.f demonstrating how to implement import_wisdom_
from_file and export_wisdom_to_file subroutines in this way. (These routines cannot
be compiled into the FFTW library itself, lest all FFTW-using programs be required to
link with the Fortran I/O library.)

Chapter 9: Upgrading from FFTW version 2 93

9 Upgrading from FFTW version 2

In this chapter, we outline the process for updating codes designed for the older FFTW 2
interface to work with FFTW 3. The interface for FFTW 3 is not backwards-compatible
with the interface for FFTW 2 and earlier versions; codes written to use those versions will
fail to link with FFTW 3. Nor is it possible to write “compatibility wrappers” to bridge
the gap (at least not efficiently), because FFTW 3 has different semantics from previous
versions. However, upgrading should be a straightforward process because the data formats
are identical and the overall style of planning/execution is essentially the same.

Unlike FFTW 2, there are no separate header files for real and complex transforms (or even
for different precisions) in FFTW 3; all interfaces are defined in the <fftw3.h> header file.

Numeric Types

The main difference in data types is that fftw_complex in FFTW 2 was defined as a
struct with macros c_re and c_im for accessing the real/imaginary parts. (This is binary-
compatible with FFTW 3 on any machine except perhaps for some older Crays in single
precision.) The equivalent macros for FFTW 3 are:

#define c_re(c) ((c)[0])

#define c_im(c) ((c)[1])

This does not work if you are using the C99 complex type, however, unless you insert a
double* typecast into the above macros (see Section 4.1.1 [Complex numbers], page 21).

Also, FFTW 2 had an fftw_real typedef that was an alias for double (in double precision).
In FFTW 3 you should just use double (or whatever precision you are employing).

Plans

The major difference between FFTW 2 and FFTW 3 is in the planning/execution division
of labor. In FFTW 2, plans were found for a given transform size and type, and then
could be applied to any arrays and for any multiplicity/stride parameters. In FFTW 3,
you specify the particular arrays, stride parameters, etcetera when creating the plan, and
the plan is then executed for those arrays (unless the guru interface is used) and those
parameters only. (FFTW 2 had “specific planner” routines that planned for a particular
array and stride, but the plan could still be used for other arrays and strides.) That is,
much of the information that was formerly specified at execution time is now specified at
planning time.

Like FFTW 2’s specific planner routines, the FFTW 3 planner overwrites the input/output
arrays unless you use FFTW_ESTIMATE.

FFTW 2 had separate data types fftw_plan, fftwnd_plan, rfftw_plan, and rfftwnd_

plan for complex and real one- and multi-dimensional transforms, and each type had its
own ‘destroy’ function. In FFTW 3, all plans are of type fftw_plan and all are destroyed
by fftw_destroy_plan(plan).

Where you formerly used fftw_create_plan and fftw_one to plan and compute a single
1d transform, you would now use fftw_plan_dft_1d to plan the transform. If you used

94 FFTW 3.3.4

the generic fftw function to execute the transform with multiplicity (howmany) and stride
parameters, you would now use the advanced interface fftw_plan_many_dft to specify
those parameters. The plans are now executed with fftw_execute(plan), which takes all
of its parameters (including the input/output arrays) from the plan.

In-place transforms no longer interpret their output argument as scratch space, nor is there
an FFTW_IN_PLACE flag. You simply pass the same pointer for both the input and output
arguments. (Previously, the output ostride and odist parameters were ignored for in-
place transforms; now, if they are specified via the advanced interface, they are significant
even in the in-place case, although they should normally equal the corresponding input
parameters.)

The FFTW_ESTIMATE and FFTW_MEASURE flags have the same meaning as before, although the
planning time will differ. You may also consider using FFTW_PATIENT, which is like FFTW_

MEASURE except that it takes more time in order to consider a wider variety of algorithms.

For multi-dimensional complex DFTs, instead of fftwnd_create_plan (or fftw2d_create_
plan or fftw3d_create_plan), followed by fftwnd_one, you would use fftw_plan_dft (or
fftw_plan_dft_2d or fftw_plan_dft_3d). followed by fftw_execute. If you used fftwnd

to to specify strides etcetera, you would instead specify these via fftw_plan_many_dft.

The analogues to rfftw_create_plan and rfftw_one with FFTW_REAL_TO_COMPLEX or
FFTW_COMPLEX_TO_REAL directions are fftw_plan_r2r_1d with kind FFTW_R2HC or FFTW_
HC2R, followed by fftw_execute. The stride etcetera arguments of rfftw are now in fftw_

plan_many_r2r.

Instead of rfftwnd_create_plan (or rfftw2d_create_plan or rfftw3d_create_plan)
followed by rfftwnd_one_real_to_complex or rfftwnd_one_complex_to_real, you now
use fftw_plan_dft_r2c (or fftw_plan_dft_r2c_2d or fftw_plan_dft_r2c_3d) or fftw_
plan_dft_c2r (or fftw_plan_dft_c2r_2d or fftw_plan_dft_c2r_3d), respectively, fol-
lowed by fftw_execute. As usual, the strides etcetera of rfftwnd_real_to_complex or
rfftwnd_complex_to_real are no specified in the advanced planner routines, fftw_plan_
many_dft_r2c or fftw_plan_many_dft_c2r.

Wisdom

In FFTW 2, you had to supply the FFTW_USE_WISDOM flag in order to use wisdom; in FFTW
3, wisdom is always used. (You could simulate the FFTW 2 wisdom-less behavior by calling
fftw_forget_wisdom after every planner call.)

The FFTW 3 wisdom import/export routines are almost the same as before (although the
storage format is entirely different). There is one significant difference, however. In FFTW
2, the import routines would never read past the end of the wisdom, so you could store
extra data beyond the wisdom in the same file, for example. In FFTW 3, the file-import
routine may read up to a few hundred bytes past the end of the wisdom, so you cannot
store other data just beyond it.1

Wisdom has been enhanced by additional humility in FFTW 3: whereas FFTW 2 would
re-use wisdom for a given transform size regardless of the stride etc., in FFTW 3 wisdom is

1 We do our own buffering because GNU libc I/O routines are horribly slow for single-character I/O, apparently
for thread-safety reasons (whether you are using threads or not).

Chapter 9: Upgrading from FFTW version 2 95

only used with the strides etc. for which it was created. Unfortunately, this means FFTW
3 has to create new plans from scratch more often than FFTW 2 (in FFTW 2, planning
e.g. one transform of size 1024 also created wisdom for all smaller powers of 2, but this no
longer occurs).

FFTW 3 also has the new routine fftw_import_system_wisdom to import wisdom from a
standard system-wide location.

Memory allocation

In FFTW 3, we recommend allocating your arrays with fftw_malloc and deallocating
them with fftw_free; this is not required, but allows optimal performance when SIMD
acceleration is used. (Those two functions actually existed in FFTW 2, and worked the
same way, but were not documented.)

In FFTW 2, there were fftw_malloc_hook and fftw_free_hook functions that allowed
the user to replace FFTW’s memory-allocation routines (e.g. to implement different error-
handling, since by default FFTW prints an error message and calls exit to abort the
program if malloc returns NULL). These hooks are not supported in FFTW 3; those few
users who require this functionality can just directly modify the memory-allocation routines
in FFTW (they are defined in kernel/alloc.c).

Fortran interface

In FFTW 2, the subroutine names were obtained by replacing ‘fftw_’ with ‘fftw_f77’; in
FFTW 3, you replace ‘fftw_’ with ‘dfftw_’ (or ‘sfftw_’ or ‘lfftw_’, depending upon the
precision).

In FFTW 3, we have begun recommending that you always declare the type used to store
plans as integer*8. (Too many people didn’t notice our instruction to switch from integer

to integer*8 for 64-bit machines.)

In FFTW 3, we provide a fftw3.f “header file” to include in your code (and which is
officially installed on Unix systems). (In FFTW 2, we supplied a fftw_f77.i file, but it
was not installed.)

Otherwise, the C-Fortran interface relationship is much the same as it was before (e.g.
return values become initial parameters, and multi-dimensional arrays are in column-major
order). Unlike FFTW 2, we do provide some support for wisdom import/export in Fortran
(see Section 8.5 [Wisdom of Fortran?], page 91).

Threads

Like FFTW 2, only the execution routines are thread-safe. All planner routines, etcetera,
should be called by only a single thread at a time (see Section 5.4 [Thread safety], page 51).
Unlike FFTW 2, there is no special FFTW_THREADSAFE flag for the planner to allow a given
plan to be usable by multiple threads in parallel; this is now the case by default.

The multi-threaded version of FFTW 2 required you to pass the number of threads each
time you execute the transform. The number of threads is now stored in the plan, and is
specified before the planner is called by fftw_plan_with_nthreads. The threads initial-
ization routine used to be called fftw_threads_init and would return zero on success;

96 FFTW 3.3.4

the new routine is called fftw_init_threads and returns zero on failure. See Chapter 5
[Multi-threaded FFTW], page 49.

There is no separate threads header file in FFTW 3; all the function prototypes are in
<fftw3.h>. However, you still have to link to a separate library (-lfftw3_threads -

lfftw3 -lm on Unix), as well as to the threading library (e.g. POSIX threads on Unix).

Chapter 10: Installation and Customization 97

10 Installation and Customization

This chapter describes the installation and customization of FFTW, the latest version of
which may be downloaded from the FFTW home page.

In principle, FFTW should work on any system with an ANSI C compiler (gcc is fine).
However, planner time is drastically reduced if FFTW can exploit a hardware cycle counter;
FFTW comes with cycle-counter support for all modern general-purpose CPUs, but you may
need to add a couple of lines of code if your compiler is not yet supported (see Section 10.3
[Cycle Counters], page 100). (On Unix, there will be a warning at the end of the configure
output if no cycle counter is found.)

Installation of FFTW is simplest if you have a Unix or a GNU system, such as GNU/Linux,
and we describe this case in the first section below, including the use of special configuration
options to e.g. install different precisions or exploit optimizations for particular architectures
(e.g. SIMD). Compilation on non-Unix systems is a more manual process, but we outline
the procedure in the second section. It is also likely that pre-compiled binaries will be
available for popular systems.

Finally, we describe how you can customize FFTW for particular needs by generating
codelets for fast transforms of sizes not supported efficiently by the standard FFTW distri-
bution.

10.1 Installation on Unix

FFTW comes with a configure program in the GNU style. Installation can be as simple
as:

./configure

make

make install

This will build the uniprocessor complex and real transform libraries along with the test
programs. (We recommend that you use GNU make if it is available; on some systems
it is called gmake.) The “make install” command installs the fftw and rfftw libraries in
standard places, and typically requires root privileges (unless you specify a different install
directory with the --prefix flag to configure). You can also type “make check” to put
the FFTW test programs through their paces. If you have problems during configuration
or compilation, you may want to run “make distclean” before trying again; this ensures
that you don’t have any stale files left over from previous compilation attempts.

The configure script chooses the gcc compiler by default, if it is available; you can select
some other compiler with:

./configure CC="<the name of your C compiler>"

The configure script knows good CFLAGS (C compiler flags) for a few systems. If your
system is not known, the configure script will print out a warning. In this case, you
should re-configure FFTW with the command

./configure CFLAGS="<write your CFLAGS here>"

http://www.fftw.org

98 FFTW 3.3.4

and then compile as usual. If you do find an optimal set of CFLAGS for your system, please
let us know what they are (along with the output of config.guess) so that we can include
them in future releases.

configure supports all the standard flags defined by the GNU Coding Standards; see the
INSTALL file in FFTW or the GNU web page. Note especially --help to list all flags and
--enable-shared to create shared, rather than static, libraries. configure also accepts a
few FFTW-specific flags, particularly:

• --enable-float: Produces a single-precision version of FFTW (float) instead of the
default double-precision (double). See Section 4.1.2 [Precision], page 21.

• --enable-long-double: Produces a long-double precision version of FFTW (long
double) instead of the default double-precision (double). The configure script will
halt with an error message if long double is the same size as double on your ma-
chine/compiler. See Section 4.1.2 [Precision], page 21.

• --enable-quad-precision: Produces a quadruple-precision version of FFTW using
the nonstandard __float128 type provided by gcc 4.6 or later on x86, x86-64, and
Itanium architectures, instead of the default double-precision (double). The configure
script will halt with an error message if the compiler is not gcc version 4.6 or later or
if gcc’s libquadmath library is not installed. See Section 4.1.2 [Precision], page 21.

• --enable-threads: Enables compilation and installation of the FFTW threads library
(see Chapter 5 [Multi-threaded FFTW], page 49), which provides a simple interface to
parallel transforms for SMP systems. By default, the threads routines are not compiled.

• --enable-openmp: Like --enable-threads, but using OpenMP compiler directives
in order to induce parallelism rather than spawning its own threads directly, and in-
stalling an ‘fftw3_omp’ library rather than an ‘fftw3_threads’ library (see Chapter 5
[Multi-threaded FFTW], page 49). You can use both --enable-openmp and --enable-

threads since they compile/install libraries with different names. By default, the
OpenMP routines are not compiled.

• --with-combined-threads: By default, if --enable-threads is used, the threads
support is compiled into a separate library that must be linked in addition to the
main FFTW library. This is so that users of the serial library do not need to link the
system threads libraries. If --with-combined-threads is specified, however, then no
separate threads library is created, and threads are included in the main FFTW library.
This is mainly useful under Windows, where no system threads library is required and
inter-library dependencies are problematic.

• --enable-mpi: Enables compilation and installation of the FFTW MPI library (see
Chapter 6 [Distributed-memory FFTW with MPI], page 53), which provides parallel
transforms for distributed-memory systems with MPI. (By default, the MPI routines
are not compiled.) See Section 6.1 [FFTW MPI Installation], page 53.

• --disable-fortran: Disables inclusion of legacy-Fortran wrapper routines (see
Chapter 8 [Calling FFTW from Legacy Fortran], page 87) in the standard FFTW
libraries. These wrapper routines increase the library size by only a negligible amount,
so they are included by default as long as the configure script finds a Fortran
compiler on your system. (To specify a particular Fortran compiler foo, pass F77=foo
to configure.)

http://www.gnu.org/prep/standards/html_node/index.html

Chapter 10: Installation and Customization 99

• --with-g77-wrappers: By default, when Fortran wrappers are included, the wrappers
employ the linking conventions of the Fortran compiler detected by the configure

script. If this compiler is GNU g77, however, then two versions of the wrappers are
included: one with g77’s idiosyncratic convention of appending two underscores to
identifiers, and one with the more common convention of appending only a single
underscore. This way, the same FFTW library will work with both g77 and other
Fortran compilers, such as GNU gfortran. However, the converse is not true: if you
configure with a different compiler, then the g77-compatible wrappers are not included.
By specifying --with-g77-wrappers, the g77-compatible wrappers are included in
addition to wrappers for whatever Fortran compiler configure finds.

• --with-slow-timer: Disables the use of hardware cycle counters, and falls back on
gettimeofday or clock. This greatly worsens performance, and should generally not
be used (unless you don’t have a cycle counter but still really want an optimized plan
regardless of the time). See Section 10.3 [Cycle Counters], page 100.

• --enable-sse, --enable-sse2, --enable-avx, --enable-altivec, --enable-neon:
Enable the compilation of SIMD code for SSE (Pentium III+), SSE2 (Pentium IV+),
AVX (Sandy Bridge, Interlagos), AltiVec (PowerPC G4+), NEON (some ARM pro-
cessors). SSE, AltiVec, and NEON only work with --enable-float (above). SSE2
works in both single and double precision (and is simply SSE in single precision). The
resulting code will still work on earlier CPUs lacking the SIMD extensions (SIMD is
automatically disabled, although the FFTW library is still larger).

− These options require a compiler supporting SIMD extensions, and compiler sup-
port is always a bit flaky: see the FFTW FAQ for a list of compiler versions that
have problems compiling FFTW.

− With AltiVec and gcc, you may have to use the -mabi=altivec option when
compiling any code that links to FFTW, in order to properly align the stack;
otherwise, FFTW could crash when it tries to use an AltiVec feature. (This is not
necessary on MacOS X.)

− With SSE/SSE2 and gcc, you should use a version of gcc that properly aligns the
stack when compiling any code that links to FFTW. By default, gcc 2.95 and later
versions align the stack as needed, but you should not compile FFTW with the
-Os option or the -mpreferred-stack-boundary option with an argument less
than 4.

− Because of the large variety of ARM processors and ABIs, FFTW does not attempt
to guess the correct gcc flags for generating NEON code. In general, you will have
to provide them on the command line. This command line is known to have worked
at least once:

./configure --with-slow-timer --host=arm-linux-gnueabi \

--enable-single --enable-neon \

"CC=arm-linux-gnueabi-gcc -march=armv7-a -mfloat-abi=softfp"

To force configure to use a particular C compiler foo (instead of the default, usually gcc),
pass CC=foo to the configure script; you may also need to set the flags via the variable
CFLAGS as described above.

100 FFTW 3.3.4

10.2 Installation on non-Unix systems

It should be relatively straightforward to compile FFTW even on non-Unix systems lacking
the niceties of a configure script. Basically, you need to edit the config.h header (copy it
from config.h.in) to #define the various options and compiler characteristics, and then
compile all the ‘.c’ files in the relevant directories.

The config.h header contains about 100 options to set, each one initially an #undef, each
documented with a comment, and most of them fairly obvious. For most of the options,
you should simply #define them to 1 if they are applicable, although a few options require
a particular value (e.g. SIZEOF_LONG_LONG should be defined to the size of the long long

type, in bytes, or zero if it is not supported). We will likely post some sample config.h

files for various operating systems and compilers for you to use (at least as a starting point).
Please let us know if you have to hand-create a configuration file (and/or a pre-compiled
binary) that you want to share.

To create the FFTW library, you will then need to compile all of the ‘.c’ files in the kernel,
dft, dft/scalar, dft/scalar/codelets, rdft, rdft/scalar, rdft/scalar/r2cf,
rdft/scalar/r2cb, rdft/scalar/r2r, reodft, and api directories. If you are compiling
with SIMD support (e.g. you defined HAVE_SSE2 in config.h), then you also need
to compile the .c files in the simd-support, {dft,rdft}/simd, {dft,rdft}/simd/*

directories.

Once these files are all compiled, link them into a library, or a shared library, or directly
into your program.

To compile the FFTW test program, additionally compile the code in the libbench2/

directory, and link it into a library. Then compile the code in the tests/ directory and link
it to the libbench2 and FFTW libraries. To compile the fftw-wisdom (command-line) tool
(see Section 4.7.4 [Wisdom Utilities], page 41), compile tools/fftw-wisdom.c and link it
to the libbench2 and FFTW libraries

10.3 Cycle Counters

FFTW’s planner actually executes and times different possible FFT algorithms in order
to pick the fastest plan for a given n. In order to do this in as short a time as possible,
however, the timer must have a very high resolution, and to accomplish this we employ
the hardware cycle counters that are available on most CPUs. Currently, FFTW supports
the cycle counters on x86, PowerPC/POWER, Alpha, UltraSPARC (SPARC v9), IA64,
PA-RISC, and MIPS processors.

Access to the cycle counters, unfortunately, is a compiler and/or operating-system depen-
dent task, often requiring inline assembly language, and it may be that your compiler is
not supported. If you are not supported, FFTW will by default fall back on its estimator
(effectively using FFTW_ESTIMATE for all plans).

You can add support by editing the file kernel/cycle.h; normally, this will involve adapting
one of the examples already present in order to use the inline-assembler syntax for your C
compiler, and will only require a couple of lines of code. Anyone adding support for a new
system to cycle.h is encouraged to email us at fftw@fftw.org.

If a cycle counter is not available on your system (e.g. some embedded processor), and you
don’t want to use estimated plans, as a last resort you can use the --with-slow-timer

mailto:fftw@fftw.org

Chapter 10: Installation and Customization 101

option to configure (on Unix) or #define WITH_SLOW_TIMER in config.h (elsewhere).
This will use the much lower-resolution gettimeofday function, or even clock if the former
is unavailable, and planning will be extremely slow.

10.4 Generating your own code

The directory genfft contains the programs that were used to generate FFTW’s “codelets,”
which are hard-coded transforms of small sizes. We do not expect casual users to employ the
generator, which is a rather sophisticated program that generates directed acyclic graphs of
FFT algorithms and performs algebraic simplifications on them. It was written in Objective
Caml, a dialect of ML, which is available at http://caml.inria.fr/ocaml/index.en.

html.

If you have Objective Caml installed (along with recent versions of GNU autoconf,
automake, and libtool), then you can change the set of codelets that are generated
or play with the generation options. The set of generated codelets is specified by the
{dft,rdft}/{codelets,simd}/*/Makefile.am files. For example, you can add efficient
REDFT codelets of small sizes by modifying rdft/codelets/r2r/Makefile.am. After you
modify any Makefile.am files, you can type sh bootstrap.sh in the top-level directory
followed by make to re-generate the files.

We do not provide more details about the code-generation process, since we do not expect
that most users will need to generate their own code. However, feel free to contact us at
fftw@fftw.org if you are interested in the subject.

You might find it interesting to learn Caml and/or some modern programming techniques
that we used in the generator (including monadic programming), especially if you heard the
rumor that Java and object-oriented programming are the latest advancement in the field.
The internal operation of the codelet generator is described in the paper, “A Fast Fourier
Transform Compiler,” by M. Frigo, which is available from the FFTW home page and
also appeared in the Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

http://caml.inria.fr/ocaml/index.en.html
http://caml.inria.fr/ocaml/index.en.html
mailto:fftw@fftw.org
http://www.fftw.org

Chapter 11: Acknowledgments 103

11 Acknowledgments

Matteo Frigo was supported in part by the Special Research Program SFB F011 “AU-
RORA” of the Austrian Science Fund FWF and by MIT Lincoln Laboratory. For previous
versions of FFTW, he was supported in part by the Defense Advanced Research Projects
Agency (DARPA), under Grants N00014-94-1-0985 and F30602-97-1-0270, and by a Digital
Equipment Corporation Fellowship.

Steven G. Johnson was supported in part by a Dept. of Defense NDSEG Fellowship, an MIT
Karl Taylor Compton Fellowship, and by the Materials Research Science and Engineering
Center program of the National Science Foundation under award DMR-9400334.

Code for the Cell Broadband Engine was graciously donated to the FFTW project by the
IBM Austin Research Lab and included in fftw-3.2. (This code was removed in fftw-3.3.)

Code for the MIPS paired-single SIMD support was graciously donated to the FFTW
project by CodeSourcery, Inc.

We are grateful to Sun Microsystems Inc. for its donation of a cluster of 9 8-processor Ultra
HPC 5000 SMPs (24 Gflops peak). These machines served as the primary platform for the
development of early versions of FFTW.

We thank Intel Corporation for donating a four-processor Pentium Pro machine. We thank
the GNU/Linux community for giving us a decent OS to run on that machine.

We are thankful to the AMD corporation for donating an AMD Athlon XP 1700+ computer
to the FFTW project.

We thank the Compaq/HP testdrive program and VA Software Corporation
(SourceForge.net) for providing remote access to machines that were used to test FFTW.

The genfft suite of code generators was written using Objective Caml, a dialect of ML.
Objective Caml is a small and elegant language developed by Xavier Leroy. The implemen-
tation is available from http://caml.inria.fr/. In previous releases of FFTW, genfft
was written in Caml Light, by the same authors. An even earlier implementation of genfft
was written in Scheme, but Caml is definitely better for this kind of application.

FFTW uses many tools from the GNU project, including automake, texinfo, and libtool.

Prof. Charles E. Leiserson of MIT provided continuous support and encouragement. This
program would not exist without him. Charles also proposed the name “codelets” for the
basic FFT blocks.

Prof. John D. Joannopoulos of MIT demonstrated continuing tolerance of Steven’s “extra-
curricular” computer-science activities, as well as remarkable creativity in working them
into his grant proposals. Steven’s physics degree would not exist without him.

Franz Franchetti wrote SIMD extensions to FFTW 2, which eventually led to the SIMD
support in FFTW 3.

Stefan Kral wrote most of the K7 code generator distributed with FFTW 3.0.x and 3.1.x.

Andrew Sterian contributed the Windows timing code in FFTW 2.

http://caml.inria.fr/

104 FFTW 3.3.4

Didier Miras reported a bug in the test procedure used in FFTW 1.2. We now use a
completely different test algorithm by Funda Ergun that does not require a separate FFT
program to compare against.

Wolfgang Reimer contributed the Pentium cycle counter and a few fixes that help portabil-
ity.

Ming-Chang Liu uncovered a well-hidden bug in the complex transforms of FFTW 2.0 and
supplied a patch to correct it.

The FFTW FAQ was written in bfnn (Bizarre Format With No Name) and formatted using
the tools developed by Ian Jackson for the Linux FAQ.

We are especially thankful to all of our users for their continuing support, feedback, and
interest during our development of FFTW.

Chapter 12: License and Copyright 105

12 License and Copyright

FFTW is Copyright c© 2003, 2007-11 Matteo Frigo, Copyright c© 2003, 2007-11 Mas-
sachusetts Institute of Technology.

FFTW is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNUGeneral Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA You can also find the GPL on the GNU web site.

In addition, we kindly ask you to acknowledge FFTW and its authors in any program
or publication in which you use FFTW. (You are not required to do so; it is up to your
common sense to decide whether you want to comply with this request or not.) For general
publications, we suggest referencing: Matteo Frigo and Steven G. Johnson, “The design
and implementation of FFTW3,” Proc. IEEE 93 (2), 216–231 (2005).

Non-free versions of FFTW are available under terms different from those of the General
Public License. (e.g. they do not require you to accompany any object code using FFTW
with the corresponding source code.) For these alternative terms you must purchase a
license from MIT’s Technology Licensing Office. Users interested in such a license should
contact us (fftw@fftw.org) for more information.

http://www.gnu.org/licenses/gpl-2.0.html
mailto:fftw@fftw.org

Chapter 13: Concept Index 107

13 Concept Index

6
64-bit architecture . 38, 55, 80

A
advanced interface 1, 6, 16, 31, 57, 69, 71
algorithm . 2
alignment 22, 26, 39, 68, 78, 82
AltiVec . 15
AVX . 15

B
basic interface . 1, 3, 24
block distribution . 56, 57, 66

C
C multi-dimensional arrays . 16
C++ . 5, 15, 17, 21, 22
c2r . 7, 26, 28
C99 . 17, 21, 22
Caml . 101, 103
code generator . 2, 101
codelet . 2, 97, 101, 103
collective function 55, 65, 68, 70
column-major . 16, 78, 87, 91
compiler . 2, 97, 99, 100
compiler flags . 97, 99
configuration routines . 42
configure . 49, 53, 97
cycle counter . 97, 100

D
data distribution 53, 55, 56, 60, 63, 69
DCT . 11, 31, 43
deadlock . 65
Devil . 3
DFT . 1, 4, 42
DHT . 13, 46
discrete cosine transform 11, 31, 43
discrete Fourier transform 1, 42
discrete Hartley transform 13, 30, 46
discrete sine transform 11, 31, 45
dist . 32, 35
DST . 11, 31, 45

E
Ecclesiastes . 18
execute . 1, 4, 38

F
FFTW . 1
fftw-wisdom utility . 19, 42
fftw-wisdom-to-conf utility . 42
flags 4, 7, 25, 28, 30, 35, 37, 78, 88
Fortran interface . 16, 74, 77, 87
Fortran-callable wrappers . 98
frequency . 4, 42

G
g77 . 99
guru interface . 1, 6, 34, 80, 88

H
halfcomplex format . 7, 11, 43
hc2r . 11, 26
HDF5 . 56
Hermitian . 6, 43
howmany loop . 35
howmany parameter . 32

I
IDCT . 12, 31, 44
in-place 4, 7, 25, 28, 29, 30, 37, 64, 79, 80
installation . 97
interleaved format . 34
iso c binding . 74, 77, 78

K
kind (r2r) . 10, 30

L
linking on Unix . 50, 54
LISP . 103
load balancing . 58, 66

M
MIPS PS . 15
monadic programming . 101
MPI . 53, 98
MPI communicator 53, 68, 70, 74
MPI I/O . 56, 64
mpicc . 53, 54

N
new-array execution 38, 68, 73, 75

108 FFTW 3.3.4

normalization . . . 4, 9, 11, 12, 13, 25, 28, 30, 42, 43,
44, 46

number of threads . 51

O
OpenMP . 49, 50, 51
out-of-place . 26, 29

P
padding . 6, 8, 28, 29, 60, 79
parallel transform . 49, 53
partial order . 6
plan . 1, 4
planner . 1
portability 15, 19, 21, 49, 77, 81, 87, 88, 91, 97
precision 5, 7, 15, 21, 22, 54, 67, 78, 80, 98

R
r2c . 7, 11, 27, 47, 71
r2c/c2r multi-dimensional array format . . 8, 28, 79,

91
r2hc . 11
r2r . 10, 29, 43, 62, 73
rank . 5
real-even DFT . 11, 43
real-odd DFT . 11, 45

REDFT . 11, 43, 101
RODFT . 11, 45
row-major 15, 25, 30, 35, 57, 61, 78

S
saving plans to disk 18, 40, 64, 83
shared-memory . 49
SIMD . 3, 15, 78
split format . 34
SSE . 15
SSE2 . 15
stride . 16, 32, 35, 71

T
thread safety . 50, 51, 67
threads . 49, 51, 66, 98
transpose . 58, 61, 62, 66, 67, 73

V
vector . 34

W
wisdom . 18, 40, 64, 83
wisdom, problems with . 18
wisdom, system-wide . 19, 41

Chapter 14: Library Index 109

14 Library Index

C
c_associated . 84
C_DOUBLE . 77, 80
C_DOUBLE_COMPLEX . 77, 80
c_f_pointer . 79, 80, 82, 84, 85
C_FFTW_R2R_KIND . 80
C_FLOAT . 80
C_FLOAT_COMPLEX . 80
c_funloc . 85
C_FUNPTR . 81
C_INT . 77, 80
C_INTPTR_T . 80
c_loc . 85
C_LONG_DOUBLE . 80
C_LONG_DOUBLE_COMPLEX . 80
C_PTR . 77
C_SIZE_T . 80

D
dfftw_destroy_plan . 90
dfftw_execute . 88
dfftw_execute_dft . 89, 90
dfftw_execute_dft_r2c . 90
dfftw_export_wisdom . 91
dfftw_forget_wisdom . 91
dfftw_import_system_wisdom 91
dfftw_import_wisdom . 91
dfftw_init_threads . 90
dfftw_plan_dft_1d . 90
dfftw_plan_dft_3d . 90
dfftw_plan_dft_r2c_1d . 90
dfftw_plan_dft_r2c_2d . 91
dfftw_plan_with_nthreads 90

F
fftw_alignment_of . 26, 39
fftw_alloc_complex 3, 15, 22, 57, 79, 82
fftw_alloc_real 15, 22, 61, 62, 80, 82
FFTW_BACKWARD . 4, 7, 25
fftw_cleanup . 23, 68
fftw_cleanup_threads . 50
fftw_complex . 4, 21, 77, 80
fftw_cost . 23
FFTW_DESTROY_INPUT 26, 66, 80
fftw_destroy_plan 4, 23, 66, 77
FFTW_DHT . 13, 30
FFTW_ESTIMATE . 4, 18, 25, 100
fftw_execute 4, 22, 38, 63, 66, 78, 81
fftw_execute_dft 40, 75, 77, 81
fftw_execute_dft_c2r . 40, 81
fftw_execute_dft_r2c 40, 79, 81
fftw_execute_r2r . 40, 81

fftw_execute_split_dft . 40
fftw_execute_split_dft_c2r 40
fftw_execute_split_dft_r2c 40
FFTW_EXHAUSTIVE . 18, 26
fftw_export_wisdom . 40, 84
fftw_export_wisdom_to_file 40
fftw_export_wisdom_to_filename 18, 40, 83
fftw_export_wisdom_to_string 40, 84
fftw_flops . 23, 66, 80
fftw_forget_wisdom . 18, 41
FFTW_FORWARD . 4, 7, 25
fftw_fprint_plan . 24
fftw_free . 4, 15, 22
FFTW_HC2R . 11, 30
fftw_import wisdom_from_filename 83
fftw_import_system_wisdom 19, 41
fftw_import_wisdom . 41, 85
fftw_import_wisdom_from_file 41
fftw_import_wisdom_from_filename 18, 41
fftw_import_wisdom_from_string 41, 84
fftw_init_threads 50, 54, 67, 68
fftw_iodim . 34, 80, 88
fftw_iodim64 . 38, 80
fftw_malloc 3, 15, 17, 22, 26, 57, 68, 80
FFTW_MEASURE . 4, 18, 26, 64
fftw_mpi_broadcast_wisdom 65, 74
fftw_mpi_cleanup . 54, 68
FFTW_MPI_DEFAULT_BLOCK 57, 63, 71
fftw_mpi_execute_dft . 68, 75
fftw_mpi_execute_dft_c2r 68
fftw_mpi_execute_dft_r2c 68
fftw_mpi_execute_r2r . 68, 73
fftw_mpi_gather_wisdom 65, 74
fftw_mpi_init 54, 55, 65, 67, 68
fftw_mpi_local_size . 69
fftw_mpi_local_size_1d 59, 70
fftw_mpi_local_size_2d 55, 57, 69
fftw_mpi_local_size_2d_transposed 63, 69
fftw_mpi_local_size_3d . 69
fftw_mpi_local_size_3d_transposed 59, 69
fftw_mpi_local_size_many 57, 69
fftw_mpi_local_size_many_1d 70
fftw_mpi_local_size_many_transposed . . . 63, 69
fftw_mpi_local_size_transposed 69
fftw_mpi_plan_dft . 70
fftw_mpi_plan_dft_1d . 70
fftw_mpi_plan_dft_2d . 55, 70
fftw_mpi_plan_dft_3d . 70
fftw_mpi_plan_dft_c2r . 71
fftw_mpi_plan_dft_c2r_2d 71
fftw_mpi_plan_dft_c2r_3d 71
fftw_mpi_plan_dft_r2c . 71
fftw_mpi_plan_dft_r2c_2d 71
fftw_mpi_plan_dft_r2c_3d 71

110 FFTW 3.3.4

fftw_mpi_plan_many_dft . 70
fftw_mpi_plan_many_dft_c2r 72
fftw_mpi_plan_many_dft_r2c 72
fftw_mpi_plan_many_transpose 63, 73
fftw_mpi_plan_transpose 63, 73
FFTW_MPI_SCRAMBLED_IN 60, 70, 71
FFTW_MPI_SCRAMBLED_OUT 60, 70, 71
FFTW_MPI_TRANSPOSED_IN 58, 63, 71
FFTW_MPI_TRANSPOSED_OUT 58, 63, 71
FFTW_NO_TIMELIMIT . 26
FFTW_PATIENT . 5, 18, 26, 51, 64
fftw_plan . 4, 22, 80
fftw_plan_dft . 5, 24
fftw_plan_dft_1d . 4, 24
fftw_plan_dft_2d . 5, 24, 77
fftw_plan_dft_3d . 5, 24, 79
fftw_plan_dft_c2r . 28
fftw_plan_dft_c2r_1d . 7, 28
fftw_plan_dft_c2r_2d . 28
fftw_plan_dft_c2r_3d . 28
fftw_plan_dft_r2c . 7, 27
fftw_plan_dft_r2c_1d . 7, 27
fftw_plan_dft_r2c_2d . 7, 27
fftw_plan_dft_r2c_3d 7, 27, 79
fftw_plan_guru_dft . 35
fftw_plan_guru_dft_c2r . 37
fftw_plan_guru_dft_r2c . 37
fftw_plan_guru_r2r . 37
fftw_plan_guru_split_dft 35
fftw_plan_guru_split_dft_c2r 37
fftw_plan_guru_split_dft_r2c 37
fftw_plan_guru64_dft . 38
fftw_plan_many_dft . 31
fftw_plan_many_dft_c2r . 33
fftw_plan_many_dft_r2c . 33
fftw_plan_many_r2r . 33
fftw_plan_r2r . 10, 29
fftw_plan_r2r_1d . 10, 29
fftw_plan_r2r_2d . 10, 29
fftw_plan_r2r_3d . 10, 29
fftw_plan_with_nthreads 50, 67

FFTW_PRESERVE_INPUT . 7, 26
fftw_print_plan . 24
FFTW_R2HC . 11, 30
fftw_r2r_kind . 10, 62, 80
FFTW_REDFT00 . 12, 29, 31
FFTW_REDFT01 . 12, 31
FFTW_REDFT10 . 12, 31
FFTW_REDFT11 . 12, 31
FFTW_RODFT00 . 12, 31
FFTW_RODFT01 . 12, 31
FFTW_RODFT10 . 12, 31
FFTW_RODFT11 . 12, 31
fftw_set_timelimit . 26
FFTW_TRANSPOSED_IN . 61
FFTW_TRANSPOSED_OUT . 61
FFTW_UNALIGNED . 26, 39, 82, 89
FFTW_WISDOM_ONLY . 26

M
MPI_Alltoall . 64
MPI_Barrier . 65
MPI_COMM_WORLD . 53, 55
MPI_Init . 55

P
ptrdiff_t . 38, 55, 80

R
R2HC . 43
REDFT00 . 43, 44
REDFT01 . 44
REDFT10 . 44
REDFT11 . 44
RODFT00 . 45
RODFT01 . 45
RODFT10 . 45
RODFT11 . 45

	Introduction
	Tutorial
	Complex One-Dimensional DFTs
	Complex Multi-Dimensional DFTs
	One-Dimensional DFTs of Real Data
	Multi-Dimensional DFTs of Real Data
	More DFTs of Real Data
	The Halfcomplex-format DFT
	Real even/odd DFTs (cosine/sine transforms)
	The Discrete Hartley Transform

	Other Important Topics
	SIMD alignment and fftw_malloc
	Multi-dimensional Array Format
	Row-major Format
	Column-major Format
	Fixed-size Arrays in C
	Dynamic Arrays in C
	Dynamic Arrays in C---The Wrong Way

	Words of Wisdom---Saving Plans
	Caveats in Using Wisdom

	FFTW Reference
	Data Types and Files
	Complex numbers
	Precision
	Memory Allocation

	Using Plans
	Basic Interface
	Complex DFTs
	Planner Flags
	Real-data DFTs
	Real-data DFT Array Format
	Real-to-Real Transforms
	Real-to-Real Transform Kinds

	Advanced Interface
	Advanced Complex DFTs
	Advanced Real-data DFTs
	Advanced Real-to-real Transforms

	Guru Interface
	Interleaved and split arrays
	Guru vector and transform sizes
	Guru Complex DFTs
	Guru Real-data DFTs
	Guru Real-to-real Transforms
	64-bit Guru Interface

	New-array Execute Functions
	Wisdom
	Wisdom Export
	Wisdom Import
	Forgetting Wisdom
	Wisdom Utilities

	What FFTW Really Computes
	The 1d Discrete Fourier Transform (DFT)
	The 1d Real-data DFT
	1d Real-even DFTs (DCTs)
	1d Real-odd DFTs (DSTs)
	1d Discrete Hartley Transforms (DHTs)
	Multi-dimensional Transforms

	Multi-threaded FFTW
	Installation and Supported Hardware/Software
	Usage of Multi-threaded FFTW
	How Many Threads to Use?
	Thread safety

	Distributed-memory FFTW with MPI
	FFTW MPI Installation
	Linking and Initializing MPI FFTW
	2d MPI example
	MPI Data Distribution
	Basic and advanced distribution interfaces
	Load balancing
	Transposed distributions
	One-dimensional distributions

	Multi-dimensional MPI DFTs of Real Data
	Other multi-dimensional Real-Data MPI Transforms
	FFTW MPI Transposes
	Basic distributed-transpose interface
	Advanced distributed-transpose interface
	An improved replacement for MPI_Alltoall

	FFTW MPI Wisdom
	Avoiding MPI Deadlocks
	FFTW MPI Performance Tips
	Combining MPI and Threads
	FFTW MPI Reference
	MPI Files and Data Types
	MPI Initialization
	Using MPI Plans
	MPI Data Distribution Functions
	MPI Plan Creation
	MPI Wisdom Communication

	FFTW MPI Fortran Interface

	Calling FFTW from Modern Fortran
	Overview of Fortran interface
	Extended and quadruple precision in Fortran

	Reversing array dimensions
	FFTW Fortran type reference
	Plan execution in Fortran
	Allocating aligned memory in Fortran
	Accessing the wisdom API from Fortran
	Wisdom File Export/Import from Fortran
	Wisdom String Export/Import from Fortran
	Wisdom Generic Export/Import from Fortran

	Defining an FFTW module

	Calling FFTW from Legacy Fortran
	Fortran-interface routines
	FFTW Constants in Fortran
	FFTW Execution in Fortran
	Fortran Examples
	Wisdom of Fortran?

	Upgrading from FFTW version 2
	Installation and Customization
	Installation on Unix
	Installation on non-Unix systems
	Cycle Counters
	Generating your own code

	Acknowledgments
	License and Copyright
	Concept Index
	Library Index

